Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление восстановление электрохимическое

    Влияние электрического потенциала и силы тока. Под действием электрического тока, проходящего через реакционную систему, на катоде и аноде протекают так называемые электрохимические "реакции — реакции окисления, восстановления, алкилирования и др., скорость которых зависит не только от концентрации, температуры и катализатора, но также и от потенциала электродов и силы тока. Ки- [c.530]


    Аппаратура, предназначенная первоначально для осуществления межфазного контакта в таких процессах, как абсорбция, ректификация или экстракция, часто применяется и для проведения реакций. Многие гетерогенные реакции в жидкой фазе протекают в колоннах с насадкой. При получении кальцинированной соды по методу Сольвея используются колонны с особого типа колпачковыми тарелками. Электрохимические процессы, такие, как окисление, восстановление и электролиз, требуют применения специальной аппаратуры, которая здесь не рассматривается. Описание электродуговых и фотохимических процессов можно найти в специальной литературе. [c.381]

    Как уже отмечалось выше, в этом методе, который в литературе называют также титрованием по предельному току, полярографическим и поляриметрическим титрованием, замеряют силу тока, протекающего между электродами, в зависимости от количества добавленного титранта. Амперометрическое титрование может быть основано на любой стехиометрической химической реакции осаждения, окисления-восстановления, кислотноосновной, комплексообразования. Если применяется только один поляризованный электрод, а потенциал второго электрода остается постоянным, то метод называется амперометрическим титрованием с одним поляризованным электродом. Если же используется двухэлектродная система с двумя идентичными (обычно платиновыми) индикаторными электродами, между которыми создается небольшая разность потенциалов ( 10-50 мВ), то такой метод называется амперометрическим титрованием с двумя поляризованными электродами. Он удобен тем, что не требует применения сложного оборудования, а электрохимическая ячейка имеет простую конструкцию. Однако кривые титрования в этом случае имеют сложную форму. [c.508]

    Решение. В окислительно-восстановительных процессах, происходящих на электродах при электролизе растворов электролитов, могут, кроме ионов электролита, принимать участие вода, ионы Н+ и ОН . Из нескольких возможных процессов на электроде будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольшие электродные потенциалы, а на аноде будут окисляться восстановленные формы систем с наименьшими электродными потенциалами. [c.105]

    Одним из новых перспективных направлений электрокатализа является биоэлектрокатализ — использование ферментов для ускорения электродных процессов. При введении фермента процессы окисления или восстановления электрохимически активного вещества осуществляются в основном на активном центре фермента, поскольку скорость ферментативного превращения существенно выше, чем электрохимического. Передача электронов с активного центра на электрод или с электрода на активный центр может быть осуществлена далее двумя принципиально разными путями  [c.265]


    Окислительно-восстановительные реакции имеют большое теоретическое и практическое значение. Эти процессы обусловливают многие явления, имеющие место в химии, биологии и технике. Например, явления окисления — восстановления лежат в основе процессов дыхания и горения, получения металлов из руд, коррозии металлов, электрохимических покрытий и т. д. [c.103]

    Практическое применение электролиза для проведения процессов окисления и восстановления. Электрохимические процессы широко применяют в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества [c.214]

    Электрохимическими называются производства, в которых используется свойство постоянного электрического тока осуществлять электролиз (разряд ионов на электродах) при прохождении его через растворы или расплавы электролитов. При этом на аноде происходит окисление, а на катоде — восстановление ионов. По сравнению с химическим окислением-восстановлением электрохимическое окисление-восстановление характеризуется следующими особен-ностя.ми  [c.137]

    Аналитические возможности метода амперометрического титрования широки. Этим методом можно определять практически все элементы периодической системы и большое число органических соединений, используя реакции осаждения, комплексообразования, окисления — восстановления и кислотно-основного взаимодействия. Основным достоинством метода является высокая избирательность подбором потенциала достигают условий, при которых в электрохимической реакции участвует только одно [c.156]

    Опыт 14. Электрохимическое окисление — восстановление. [c.40]

    Реакция окисления — восстановления пригодна для объемного анализа, если она протекает быстро или если существует возможность ускорения замедленной реакции действием катализаторов и подавления мешающих индуцированных реакций. Кроме того, должен существовать индикаторный электрод, правильно отражающий изменения потенциала в зависимости от концентрации электрохимически активных частиц. Математической основой окислительно-восстановительного титрования является уравнение Нернста [c.161]

    Если электрохимические эквиваленты Z обеих систем, участ- вующих в реакции окисления — восстановления, равны, т. е. Zi = Z2 (симметричная реакция окисления — восстановления), то [c.166]

    Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всего будет зависеть от относительных значений электродных потенциалов соответствующих электрохимических систем. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольший электродный потенциал, а на аноде будут окисляться восстановленные формы систем с наименьшим электродным потенциалом. На протекание некоторых электрохимических процессов оказывает тормозящее действие материал электрода такие случаи оговорены ниже. [c.282]

    Следовательно, потенциал каломельного электрода определяется активностью аниона труднорастворимой соли. Это эквивалентно объединению реакции окисления — восстановления ртути, непосредственно протекающей на электроде, и реакции осаждения ионов в виде каломели в единый электрохимический процесс  [c.263]

    В качестве химических реакций соединений ХиУ с продуктами электролиза Я и Я/ используют реакции любого типа окисления-восстановления, осаждения, кислотно-основного взаимодействия и комплексообразования. Содержание веществ ХиУ определяют по количеству электричества, затраченного на образование реагентов Я и Л/. Таким образом, при кулонометрическом титровании титрант готовится электрохимически, причем его генерацию можно осуществлять непосредственно в анализируемом растворе. [c.307]

    Электрохимические реакции происходит окисление—восстановление на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов. [c.12]

    Реакция окисления — восстановления. Для определения количества вещества В электрохимически генерируют вещество А при потенциале ф1 по реакции [c.72]

    Левант Г. Е., Химические реакции и электрический ток (электрохимические процессы окисления-восстановления), Советская наука . М., 1957, [c.302]

    Все электрохимические реакции происходят при протекании электрического тока в цепи. Эта цепь слагается из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках переносчиками тока являются электроны, в растворах электролитов — ионы. Непрерывность протекания тока в цепи обеспечивается только в том случае, если происходят процессы на электродах, т. е. на границе металл — электролит. На одном электроде происходит процесс приема электронов — восстановление, на другом электроде — процесс отдачи электронов — окисление. Особенностью электрохимических процессов в отличие от обычных химических является пространственное разделение процессов окисления и восстановления. Из этих со1р)яженных процессов, которые не могут происходить один без другого, и слагаются в целом химические процессы в электрохимических системах. [c.314]


    Растворы и расплавы электролитов. Неотъемлемой частью любой электрохимической системы является раствор или расплав электролитов, так как процессы окисления — восстановления протекают на границе электродов и раствора либо расплава электролитов. [c.10]

    Практическое арименение электролиза для проведения процессов окисления и восстановления. Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.). [c.181]

    Реакции окисления-восстановления. Используя этот тип реакций, с помощью кулонометрического титрования можно определять кислород-, азот- и серосодержащие соединения, которые имеют функциональные группы, способные окисляться или восстанавливаться. В частности, для определения меркаптанов, тиомочевины и ее производных можно использовать электрохимически генерированные ионы Си(П), У(У), Со(Ш), Мп(П1), Сг(У1), Се(1У), 1(1), Вг2 и СЬ. В зависимости от величины редокс-потенциала титранта, природы определяемого соединения, наличия следов воды, окисление этих соединений протекает до дисульфидов или сульфокислот  [c.538]

    Значение окислительно-восстановительных реакций. Окисли тельно-восстановительные реакции имеют большое значение для химии. К их числу принадлежит больше половины всех реакций, изучаемых ею. Окислительно-восстановительные процессы важны для биологии и Б технике. Так, явления окисления-восстановления лежат в основе процессов дыхания и горения, добывания металлов из руд, коррозии металлов, а также электрохимических процессов (получение покрытий гальэаннческим путем, приготовление ряда важных препаратов). Окислительно-восстановительные реакции широко используются в аналитической химии, в синтезе ряда важные для практики препаратов и продуктов химической промышленности (азотная кислота, белильные соли и ряд других). [c.286]

    Процессы электрохимического окисления-восстановления проводят в электролизерах, принципиальная схема которого представлена на рис. 6.29. [c.207]

    При прохождении электрического тока через раствор происходит электролиз, на электродах образуются продукты окисления-восстановления. На положительном электроде (аноде) протекает окисление, а на отрицательном (катод) — восстановление. Таким образом, анод является электрохимическим окислителем, а катод — электрохимическим восстановителем. В ряде случаев катодное и анодное пространство разделяют пористыми диафрагмами. Их назначение — не допускать смешения растворов, препятствовать диффузии, переносу нерастворимых частиц, не затрудняя при -этом переноса ионов. [c.207]

    Методы потенциометрического титрования. Потенциометрическое титрование-—один из объективных электрохимических способов объемного анализа — служит для определения концентрации раствора и константы электролитической диссоциации слабой кислоты и слабого основания. Его применяют при исследовании растворов, окращенных и мутных многокомпонентных с малой концентрацией слабых электролитов и других, визуальное титрование которых затруднено. Виды потенциометрического титрования аци-днметрическое, алкалиметрическое, иодометрическое и другие основаны на реакциях осаждения, окисления, восстановления, комп-лексообразования и т. п. в водных и неводных растворах. Потенциометрическое титрование проводят компенсационным и некомпенсационным методами. [c.167]

    И наконец, электрохимические детекторы, получившие распространение как высокоселективные и чувствительные детекторы для обнаружения таких соединений, которые способны к электрохимическому окислению или восстановлению. Электрохимические детекторы работают только с проводящей водной подвижной фазой, и, следовательно, они наиболее подходят для обращенно-фазовой или ионнообменной хроматографии. [c.58]

    Полярографический анализ основан на электрохимическом поведении растворенных веществ, т. е. на способности этих веществ окисляться или восстанавливаться на инертном электроде при наложении определенного потенциала. При достижении определенного потенциала, необходимого для окисления (восстановления) вещества в растворе, на электроде происходит соответствующая реакция и через раствор потечет ток. С увеличением потенциала сила тока растет до тех пор, пока не достигнет значения, определяемого скоростью диффузии реагирующего вещества к электроду. Это значение силы тока называется предельным диффузионным током. Графическое изображение зависимости силы тока от приложенного напряжения (или от потенциала рабочего электрода) называется поляро-граммой. Полярографическая волна содержит информацию о качестве и природе вещества, находящегося в растворе. Высота волны пропорциональна концентрации реагирующего вещества, так как предельный диффузионный ток линейно зависит от концентрации, а потенциал полуволны 1/2 характеризует природу разряжающегося вещества. [c.18]

    Существует несколько способов проведения измерений методом ВДЭК. Наиболее распространенный из них заключается в регистрации промежуточных или конечных продуктов реакции на диске при Д = onst путем их электрохимического окисления или восстановления на кольцевом электроде в той области потенциалов, где остальные компоненты раствора не проявляют электрохимической активности (при /Д = 0 ток на кольце отсутствует). При этом получаемые на кольцевом электроде поляризационные кривые состоят из одной или нескольких волн (рис. 6.7), отвечающих либо окислению (восстановлению) различных продуктов реакции на диске, либо различным стадиям окисления (восстановления) одного и того же продукта. Вид поляризационной кривой на кольце может существенно меняться при изменении потенциала диска. Поэтому при изучении электрохимического поведения органических веществ методом ВДЭК обычно получают семейство поляризационных кривых на кольцевом электроде, соответствующих различным значениям [c.210]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]

    Реакции окисления — восстановлени , протекающие на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, составляют суть процесса, называемого электрол1пом. Участие металлов в реакциях с переносом электронов определяется НХ положением в электрохимическом ряду напряжений. [c.154]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Количество кислорода на поверхности определяли методом рентгеновской фотоэлектронной спектроскопии окисление (восстановление) алмаза проводили обработкой в кислородной (водородной) плазме или же непосредственно в растворе индифферентного электролита — с помощью анодной (катодной) поляризации. В работе [117] получены следующие количественные данные, которые могут служить для ориентировки. Атомное отношение О/С на поверхности свежеосажденного алмаза, покрытого, как уже упоминалось, монослоем водорода (hydrogen-terminated), невелико 0,032. После обработки в водородной плазме (3 час) оно еще ниже 0,017. Обработка в кислородной плазме (1 час) увеличивает его до 0,15. Электрохимические обработки меняют это отношение в более узких пределах после катодной поляризации (при -1,7 В) оно составляет 0,40, после анодной (при +2,5 В) — 0,10. Согласно [118], введенный на поверхность алмаза кислород не удаляется полностью при катодной поляризации. [c.34]

    Такая процедура с молекулой серной кислоты позволяет установить, что степень окисления атома 8 в ней равна +6. Условность есть и в этом случае, так как атому водорода всегда приписывается степень окисления +1, а атому кислорода -2. Восстановление атома 8 в Нг804 может происходить электрохимически на катоде, в результате чего образуются НгЗОз, НгЗОг и многие другие частицы вплоть до Н28, в которой степень окисления атома серы равна -2. При этом восстановление изменяет координационное окружение атома серы от 4 до 2. Всю цепочку окислительно-восстановительных превращений атома 8 можно провести на аноде в обратном порядке, начиная о НаЗ. Это связано с обратимостью реакций окисления—восстановления многих неорганических соединений. В Отличие от этого так назьшаемые окислшельно-восста-новительные превращения соединений углерода на связях С-Х необратимы. [c.243]


Смотреть страницы где упоминается термин Окисление восстановление электрохимическое: [c.260]    [c.93]    [c.179]    [c.172]    [c.29]    [c.554]    [c.217]    [c.156]    [c.20]    [c.48]    [c.50]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

окисление—восстановление



© 2024 chem21.info Реклама на сайте