Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Охлаждающая способность углеводородов

    Сырье — рафинат — насосом 10 через водяной холодильник 11 подается в регенеративные кристаллизаторы 13—16, где охлаждается фильтратом, полученным в I ступени фильтрования. Число кристаллизаторов зависит от пропускной способности установки. Сырье разбавляется холодным растворителем в трех точках на выходе его из кристаллизаторов 13, 14 и 15. Растворитель подается насосами из приемников сухого и влажного растворителей (на схеме не показано). Из регенеративных кристаллизаторов раствор сырья поступает в аммиачные кристаллизаторы 18—20, где за счет испарения хладагента (аммиак или пропан), поступающего из приемника 24, охлаждается до температуры фильтрования. Охлажденная суспензия твердых углеводородов в растворе масла поступает в приемник 1, а оттуда самотеком в вакуумные фильтры 2 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, который связан с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) собирается в вакуум-приемнике 7, откуда насосом 17 подается противотоком к раствору сырья через регенеративные кристаллизаторы, а затем через теплообменник 12 для охлаждения влаж- [c.80]


    Такой способ охлаждения имеет ряд недостатков. Заметные количества тяжелых углеводородов от С5 и С, и даже более тяжелых остаются в сырьевом газе после компримирования и не задерживаются концевыми холодильниками компрессоров. Эти углеводороды затем могут сорбироваться активированной окисью алюминия, снижая тем самым ее способность поглощать пары воды. По этой и другим причинам принято несколько охлаждать сырьевой газ до ввода в осушители, отделяя таким образом большую часть тяжелых углеводородов и частично пары воды. Выгодно охлаждение до температуры -(-10° С. Если температура снижается еще больше, то это приводит к потере заметных количеств пропилена в конденсате. На некоторых установках отделение тяжелых углеводородов осуществляется с помощью систем адсорбционных и отпарных колонн. Таким путем почти все углеводороды тяжелее пропана отделяются от сырьевого газа до его поступления в холодильную секцию установки. Эта операция совершенно отличается от описанного в одном из следующих разделов статьи способа разделения, в котором адсорбционная и отпарная колонны применяются вместо деметанизатора. [c.29]

    Имеются предложения, предусматривающие метанизацию к инертной жидкости, которая, мгновенно охлаждаясь, поддерживает температуру постоянной. Как правило, для этой цели предлагаются органические жидкости (обычно ароматические углеводороды) их точка кипения зависит от рабочего давления процесса, поэтому необходимо предусматривать меры, обеспечивающие незначительное илп полное отсутствие потерь растворителя при испарении [4]. Другим, противоположным методом поддержания постоянной температуры метанизации газов с повышенной реакционной способностью является применение псевдоожиженного слоя катализатора, который позволяет осуществлять одновременно взаимодействие п охлаждение катализатора, а также реагирование газов [3]. Процесс метанизации, осуществляемый как в жидкой фазе, так и в псевдоожиженном слое, обладает рядом недостатков, одним из которых является неизбежное взаимное перемешивание, препятствующее полной конверсии реагирующих газов. По этой причине обычно практикуется комбинирование процессов, осуществляемых в жидкой фазе или в псевдоожиженном слое, с каталитической конверсией в неподвижном слое. [c.181]

    С водородом, а затем подают в реактор, содержащий катализатор, способный селективно расщеплять нормальные парафиновые углеводороды. На выходе из реактора продукты охлаждают и разделяют на водородсодержащий газ, сжиженный газ и высокооктановый бензин. В течение первых шести месяцев эксплуатации установки октановое число бензинов повысилось на 2—5 пунктов. Удаление нормальных парафинов снижает давление насыщенных паров риформинг-бензинов, поскольку эти парафины в больших концентрациях присутствуют в головной фракции сырья. В процессе селектоформинга улучшение октановых характеристик в различных фракциях происходит неодинаково у низкокипящих продуктов октановые числа выше, чем у высококипящих. Поэтому во многих случаях риформинг-бензины вначале целесообразно разделить и на селектоформинг направить определенную узкую фракцию. Использование автономной системы селектоформинга позволяет улучшить качество не только риформатов, но и других продуктов, получаемых на нефтеперерабатывающем заводе. [c.363]


    Пробу весом в 10—500 мг нагревают с 10—15 мл серной кислоты, выделившийся углеводород собирают в газовой бюретке, где его очищают от двуокиси углерода и сернистого ангидрида при помощи раствора водного едкого натра. После этого газ разбавляют воздухом и охлаждают жидким азотом. Масс-спектрометром определяют присутствие водорода или метана, так как только они могут обладать достаточным давлением паров при температуре жидкого азота. Потом сосуд с пробой при температуре жидкого азота эвакуируют до остаточного давления не более мм рт. ст. После отключения вакуум-насоса пробе дают испариться при комнатной температуре. Поскольку водород и метан удалены, можно индентифицировать при помощи масс-спектрографа высшие углеводороды, которые разлагаются на характерные осколки, способные к дальнейшей диссоциации в камере спектрометра. [c.225]

    Хотя основную массу загрязняющих воду примесей составляют, как правило, нелетучие вещества, не поддающиеся газохроматографическому определению, запах, вкус или токсичность воде обычно придают летучие соединения. Как подчеркивает Лин [143], правильный выбор места отбора пробы и необходимой частоты (периодичности) ее отбора имеет решающее значение для получения надежных результатов. Обычно анализ проб проводится не на местах ее отбора, а в лаборатории. Склянки, предназначенные для отбора проб, должны быть тщательно вымыты, высушены, охлаждены и закрыты завинчивающимися тефлоновыми крышками. Можно единовременно отобрать одну большую пробу объемом от 1 до 5 л или же отбирать через определенные промежутки времени аликвотные объемы воды с тем, чтобы в итоге проба была такой же. В некоторых случаях необходима специальная обработка пробы (консервирование), препятствующая протеканию реакций, способных изменить ее исходный состав. Если, например, анализируемыми компонентами являются галогенпроизводные углеводородов, желательно удалить или замаскировать содержащийся в воде хлор, чтобы исключить возможность его взаимодействия с углеводородами во время [c.108]

    Обычно растворитель-экстрагент выбирают с учетом его экстракционной эффективности, инертности и температуры кипения. Для экстракции продуктов перегонки с водяным паром многие исследователи предпочитают этиловый эфир в силу его высокой экстракционной способности, хотя пентан или изопентан мо гут обеспечить лучшие результаты при экстракции продуктов ферментации углеводороды обладают меньшей экстракционной эффективностью, но при их использовании в водной фазе остаются низкомолекулярные спирты, которые обычно переходят в эфирный экстракт. Этиловый эфир склонен к образованию пе рекиси, и неосторожное его использование в качестве растворителя-экстрагента может привести к образо ванию посторонних веществ. Как правило, чем ниже температура кипения растворителя-экстрагента, тем меньше потери низкокипящих летучих веществ на окончательной стадии концентрирования. Но даже и при использовании низкокипящего растворителя необходимо следить за объемом удаленного растворителя летучие вещества даже с достаточно высокими температурами кипения вносят свой вклад в давление паров системы, и поэтому в процессе концентрирования следует ожидать потерь летучих пропорционально их концентрации и давлению паров. Иногда концентрирование осуществляют, направляя поток азота в пробирку с концентрируемым экстрактом. По мере испарения растворителя экстракт охлаждается, при этом происходит концентрирование имеющихся в газе примесей, которые затрудняют последующий анализ. В некоторых условиях в пробирке может конденсироваться атмосферная влага. От имеющихся в газе примесей можно избавиться, если предварительно пропустить газ через молекулярное сито (см. ниже). [c.145]

    Для переработки тощих газов (до 50 г/м жидких углеводородов) применяется более простая схема переработки газа - методом адсорбции. Этот метод основан на способности твердых пористых материалов поглощать пары и газы. В качестве адсорбента обычно применяется активированный уголь. Уголь поглощает из газа более тяжелые углеводороды и насыщается ими. Затем насыщенный адсорбент обрабатывается острым водяным паром (десорбция). Смесь паров углеводородов и воды охлаждается и конденсируется. [c.13]

    Из смазочных масел, полученных из парафинистых нефтей, во избежание их застывания при низких температурах удаляют твердые высшие алканы (депарафинизация). Масло растворяют чаще всего в смеси метилэтилкетона, бензола и толуола, охлаждают до —20 или —40°С и отфильтровывают твердый парафин, после чего отгоняют из масла смесь растворителей. Для депара-финизации дизельного топлива используют способность мочевины образовывать труднорастворимые комплексные соединения с высшими н-алканами, которые отделяют и разлагают нагреванием до 60—75°С на мочевину и жидкий парафин. После очистки твердый парафин применяют как изолятор в электротехнике, для пропитывания спичек и кож, для изготовления свечей. Окислением кислородом воздуха превращают его в синтетические жирные кислоты (см. главу XIV), используемые в мыловарении. Сплавлением со смазочным маслом получают вазелин, применяемый для смазки приборов, в медицине и парфюмерии. Жидкий парафин после растворения в бензине очищают обработкой противоточно движущимся твердым адсорбентом (от примеси ароматических углеводородов), затем отгоняют растворитель. Его используют для получения высших жирных спиртов (см. главу XIV) и белково-витаминного концентрата (см. главу V). Продувая воздух через гудрон, при нагревании превращают его в битум. Это черная полужидкая или твердая смолистая масса, которая служит для приготовления дорожного асфальта, а также в качестве электро- и гидроизолирующего материала в электротехнике. Сжиганием нефтяных масел при недостатке воздуха получают сажу для изготовления печатной краски и резиновых изделий. [c.189]


    После отдувки углеводородов для восстановления адсорбционной способности уголь сушат до содержания влаги не выше 10% и охлаждают, для чего вначале пропускают через змеевик горячую воду, нагретую в подогревателе 5, а затем — холодную. [c.212]

    Адсорбционную характеристику адсорбента получают на основании данных об адсорбции какого-либо (вещества, обычно взятого в определенном растворителе и при определенной температуре. При нахождении хроматографической адсорбционной способности силикагелей, применяемых для разделения смесей углеводородов, чаще всего пользуются растворами бензола или толуола в н.гептане или изооктане (2,2,4-три-метилпентане) при этом концентрация ароматического углеводорода в исходном растворе составляет 50, 20 или 10% по объему. Наиболее целесообразно применять 10%-ный раствор бензола в н. гептане. Как правило, при определении активности силикагеля пользовались 20 мл такого раствора, который пропускали через небольшую колонку диаметром 9—10 мм, в которой помещалось 10 г испытуемого образца адсорбента. При этом адсорбент охлаждался до 6—10°. При определении относительной адсорбируемости различных углеводородов мы применяли 10%-ный раствор испытуемого углеводорода в и. гептане. [c.59]

    Метод ректификации. Он является основным методом разделения газов. Фракционировать газы на компоненты непосредственно из газовой фазы затруднительно. Чаще всего газ разделяют на две щирокие фракции низкомолекулярных углеводородов в газообразном виде и высокомолекулярных в жидком виде. Выделение из газа жидкой фазы достигается понижением температуры и повышением давления. Охлаждение газовой смеси до низких температур позволяет несколько снизить давление, необходимое для сжижения углеводородов. Для охлаждения газов применяют различные холодильные системы аммиачные (до —50° С), этано-аммиачные (до —82° С) и с дроссельным охлаждением, при котором возможны еще более низкие температуры (эффект дросселирования основан на способности сжатых газов сильно охлаждаться при быстром понижении давления). [c.230]

    Адсорбция и десорбция — основные стадии процесса. При десорбции уголь увлажняется и теряет способность адсорбировать углеводороды, так как поры его заполняются молекулами воды. Чтобы подготовить уголь к вторичной адсорбции, его подвергают осушке и охлаждению. Для этого через слой его продувают нагретый, а затем холодный воздух или отбензиненный газ. В результате сушки влажность угля снижается с 7—10 до I—2%. Охлаждают уголь до температуры 20—25 °С. По завершении стадии охлаждения адсорбер переключают на адсорбцию, и начинается новый цикл процесса. [c.142]

    Адсорбционный способ основан на способности твердых пористых материалов (адсорбентов) поглощать (адсорбировать) пары и газы. Газ пропускают через цилиндрические аппараты — адсорберы, наполненные адсорбентом, например активированным углем. Адсорбент поглощает из газа преимущественно тяжелые углеводороды и с течением времени насыщается ими. Для извлечения поглощенных углеводородов и восстановления адсорбционной способности насыщенный адсорбент обрабатывают острым водяным паром. Смесь водяных и углеводородных паров охлаждается и конденсируется. Полученный нестабильный бензин легко отделяется от воды при отстое. Для обеспечения непрерывного отбензинивания газа ставят несколько периодически работающих адсорберов, поочередно отключаемых на десорбцию. Такая система работы является полунепрерывной. [c.276]

    Пары сжиженных углеводородных газов обладают значительной упругостью (давлением), которая возрастает с повышенпедг температуры. Для жидкой фазы углеводородов характерен высокий коэффициент объемного расширения, она может охлаждаться до отрицательных температур. Паровая фаза имеет плотность, значительно превышающую плотность воздуха, обладает медленной диффузией, способна накапливаться в низких местах и колодцах, особенно при отрицательных температурах воздуха. В отличие от других газов имеет низкую температуру воспламенения и нпзкие значения пределов взрываемости (воспламеняемости) [c.10]

    Есла выделение микрокапелек воды из топлива любым из перечисленных путей происходит, когда топливо имеет температуру ниже 0°, то они образуют микрокристаапики льда. Однако не всегда выделение микрокапелек воды при отрицательных температурах сопровождается образованием микрокристалликов льда. Объясняется это способностью капелек воды переохлаждаться, при этом с уменьшением размеров капелек степень их переохлаждения повышается. Величина последних определяется скоростью охлаждения топлива чем оно быстрее охлаждается, тем мельче образуются капельки воды и тем больше их склонность к переохлаждению. Состояние переохлаждения неустойчиво, и поэтому при перемешивании или перекачке топлива, содержащего переохлажденные капельки воды, мгновенно образуются кристаллы льда. Переохлаждаться способна вода, не только выделившаяся из топлива в виде микрокапелек, но и содержащаяся в нем в растворенном состоянии. Так, И. А. Рагозин [19] отмечает, что при постепенном охлаждении топлив, содержапщх большое количество ароматических углеводородов, выделение растворенной воды из топлива задерживается. В дальнейшем при резком охлаждении такого переохлажденного топлива или при его перемешивании, или перекачке из топлива почти одновременно выделяется большая часть воды, растворенной в нем, с последующим образованием большого количества кристаллов льда. [c.232]

    За слоем адсорбента имеются два последовательно соединенных фиксирующих прибора, один из которых, как указывалось выше, основан на измерении теплопроводности, другой — на измерении теплового эффекта сгорания. Первый прибор фиксирует сумму данного компонента и неадсорбирующегося метана, второй (термохимический) — лишь тяжелые углеводороды (температура накала платиновой нитипе выше 500 С). Длина печи составляет одну треть от длины адсорбционной колонки, поэтому при движении печи от входа к выходу адсорбент за печью охлаждается и таким образом его адсорбционная способность восстанавливается, благодаря чему создаются условия для следующего цикла. В месте погружения колонки в печь в точках, отвечающих характеристической температуре компонентов смеси, происходит непрерывное обогащение, в результате чего выходные кривые имеют резко выраженный максимум. [c.182]

    И церезина отделяют в виде твердой фазы — петролатума — от жидкой фазы — депарафинированного масла. Растворитель регенерируют и вновь используют. При Д. с применением пропана в качестве растворителя последний является одновременно и охлаждающим агентом. Депарафинируемое мас,1го смешивают с 2—3 объемами пропана под давлением 12—14 ат при 32—38°. При уменьшении давления смесь охлаждается до минус 40° вследствие испарения части пропана. Охлажденную смесь фильтруют под давлением. Применяют также Д. в растворе с.меси ЗОз с бензолом. Нашел применение процесс карбамидной Д., основанный на способности мочевины (карбамида) давать кристаллич. продукты (комплексы) с м-парафинами. Образовавшийся продукт отделяют фильтрованием от основной массы жидкого нефтепродукта, разлагают водой и выделенпы( углеводороды нормального строения используют в различных синтезах, напр, моющих средств. [c.532]

    Более распространена депарафинизация смазочных масел с применением растворителей, которые должны обладать низкой растворяющей способностью по отношению к высшим нормальным парафинам и А то же время хорошо растворять изопарафины, нафтены и ароматические углеводороды. Обычно для этой цели используют смешанные растворители, состоящие из кетона (ацетон, метилэтилкетон, метилизобутилкетон) и ароматического углеводорода (бензол, толуол). Процесс осуществляется следующим образом. Исход-нз Ю масляную фракцию смешивают с 1—4 объемами растворителя и охлаждают в кристаллизаторах типа труба в трубе до минус 5—минус 30 °С. Выпавший осадок отделяют на фильтр-прессах или центрифугах. Парафиновый гач, содержащий 60—80% твердых углеводородов, подвергают повторной кристаллизации (обез-масливаиие парафина) к нему добавляют подогретый растворитель и затем охлаждают. Выделившийся твердый парафин отделяют от фильтрата описанным способом. [c.37]

    Термин пламя часто, но неправильно, применяют к очень горячим, прозрачным и почти невидимым газам. Однако пламена всегда светящиеся. Если пламя охлаждается так, что оно уже перестает светиться, то оно превращается в дым. Свечение пламени обусловлено раскаленными сажистыми частицами. В пламенах, образующихся при сжигании твердого топлива, свечение создается раскаленными частицами золы. В зависимости от количества и размеров твердых частиц излучательная способность пламени лежит в пределах между излучательной способностью прозрачных газов и величиной 0,95, как установлено Тринксом и Келлером . Такая высокая излучательная способность наблюдается лишь на коротком отрезке длины пламени, как показано на рис. 44, на котором представлено характерное соотношение между расстоянием от горелки и излучательной способностью пламени. По выходе из горелки топливовоздушной смеси требуется время для достижения температуры, при которой углеводороды разлагаются, и для достижения образующимися сажистыми частицами температуры горячих газов. По мере распространения пламени образование новых сажистых частиц и сгорание ранее образовавшихся частиц взаимно уравновешивается. На коротком расстоянии за этой точкой новых сажистых частиц не образуется, а ранее образовавшиеся сажистые частицы сгорают. Инженеры-печники обычно хотят, чтобы огонь погас, когда продукты сгорания входят в вытяжную трубу или [c.50]

    Толуол — 159 (т. кип. 110,6°)—и ксилолы—172, 173, 174 — очищают аналогичным образом следует помнить, однако, что эти углеводороды обладают более высокой, чем бензол, способностью сульфироваться, поэтому при обработке их серной кислотой необходимо охлаждать смесь, поддерживая температуру ниже 30 °С. Кроме серной кислоть , рекомендуется также применять для высушивания СаС1г, хотя, вообще(. говоря, может оказаться достаточно и простой перегонки, так как зрсазанные углеводороды образуют азеотропные смеси с водой или имеют значительно более высокую температуру кипения, чем вода.  [c.438]

    При переработке тощих газов (до 50 г/ж Сз 4- высшие) применяется метод адсорбции, основанный на способности твердых пористых материалов (адсорбентов) поглощать пары и газы. В качестве адсорбента обычно используют активированный уголь, который поглощает из газа преимущественно тяжелые углеводс роды и постепенно насыщается ими. Для извлечения поглощенных углеводородов и восстановления адсорбционной способности насыщенный уголь обрабатывают водяным паром. Смесь водяных и углеводородных паров, отогнанная из адсорбера, охлаждается и конденсируется. Полученный нестабильный бензин легко отделяется от воды при отстое. Для отбензинивания газов газоконденсатных месторождений применяют силикагель.  [c.15]


Смотреть страницы где упоминается термин Охлаждающая способность углеводородов: [c.34]    [c.160]    [c.83]    [c.210]    [c.11]    [c.158]    [c.1208]    [c.211]    [c.556]    [c.170]    [c.532]    [c.29]   
Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Охлаждающая способность



© 2025 chem21.info Реклама на сайте