Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобутилен абсорбция

    В промышленности раствор серной кислоты применяется в так называемых холодных или горячих кислотных процессах для полимеризации изобутилена. Оба процесса основаны на описанных выше принципах. Холодный кислотный процесс включает в себя абсорбцию изобутилепа при нормальной температуре из нефтезаводских газовых фракций при помощи 60—65% серной кислоты, которая не абсорбирует нормальные бутены. Раствор, в большой степени содержит изобутилен в виде трет-бутиловых спиртов, нагреваемых примерно до 100° С. Получается смесь димера и тримера в отношении 3 1 [392, 393]. Вышеприведенный двухступенчатый процесс дает жидкие углеводороды в количествах, согласующихся только с имеющимся налицо изобутиленом. [c.115]


    Абсорбция. На стадии абсорбции олефины нужно как можно полнее превратить в диалкилсульфаты. При температурах выше 5 С диалкилсульфаты растворимы в углеводородах, тогда как кислые алкилсульфаты — нет. Предпочтительным олефином является пропилен, но можно использовать и н-бутилены. Пропиленовое сырье подвергали переработке в промышленных масштабах. Несмотря на то что исчерпывающих исследований проведено не было, использование бутиленового сырья, содержащего изобутилен, не принесло хороших результатов. Изобутилен обусловливает повышение расхода кислоты и сам расходуется нерационально. В абсорбере вступает в реакцию всего 10—25% от общего количества олефина, при этом расход кислоты составляет примерно 0,2—0,5%. Точное количество зависит от общего расхода кислоты или от количества свежей кислоты, загруженной в секцию алкилирования. [c.233]

    Во всех других случаях, независимо от того, требуется или не требуется получать изобутилен в качестве товарного продукта, его нужно выделять в первую очередь, чтобы к-буте ы были надлежащей чистоты. В промышленности изобутилен удаляют исключительно селективной абсорбцией 65%-ной серной кислотой в условиях, при которых с ней не реагируют ни бутадиен, ни к-бутены. [c.186]

    Эту реакцию можно использовать не только для того, чтобы отделить олефины от парафинов, но и для разделения смеси низших олефинов. В последнем случае пользуются их различной реакционной способностью по отношению к серной кислоте. Например, из газовой смеси, содержащей этилен, пропилен, -бутилены, изобутилен и парафины, изобутилен поглощают холодной 50—65%-ной серной кислотой, н-бутилены — холодной 75%-НОЙ, пропилен — холодной 90%-ной, а этилен — горячей 90—96%-ной серной кислотой. Метановые углеводороды серной кислотой не поглощаются. Подробности этого процесса как в отношении стадии абсорбции, так и в отношении стадии гидролиза алкилсерных кислот в соответствующие спирты описаны в гл. 8. Применимость этого метода широка его можно использовать для разделения газовых смесей, содержащих от 2 до 100% олефинов. Сернокислотное поглощение олефинов применяли во время первой мировой войны в Англии для удаления небольших примесей этилена из коксового газа. Однако такой метод получения спиртов менее выгоден по сравнению с методом, предусматривающим предварительное выделение и концентрирование олефинов с последующей гидратацией. Поглощение олефинов серной кислотой все еще применяют в тех случаях, когда разделение физическими методами затруднительно, например при извлечении изобутилена из смеси с н-бутиленами и другими С4-углеводородами. [c.116]


    Вычисленные на основании этих данных относительные скорости абсорбции трех бутиленов серной кислотой представляют собой отношение следующих чисел бутилен-1—1 бутилен-2—2 изобутилен — 280—290. [c.268]

    Описание процесса (рис. 27). Исходным сырьем служат различ. ные бутан-бутиленовые фракции. На первой ступени процесса н-бутен абсорбируется серной кислотой с образованием моно- и ди-бутилсульфатов. Чтобы предупредить образование полимеров при абсорбции, необходимо тщательно регулировать концентрацию кислоты и температуру процесса. Если в исходной фракции присутствует изобутилен, то его удаляют предварительной абсорбцией серной кислотой. Добавлением воды к смеси кислота—углеводородное сырье—вода полученные моно- и дибутилсульфаты гидролизуются с образованием вторичного бутилового спирта. Для получения максимального выхода целевого продукта и подавления образования полимера необходимо тщательно регулировать интенсивность перемешивания и температуру. [c.54]

    Абсорбция является обратимой реакцией, и на равновесие влияют концентрация серной кислоты, температура и отношение кислоты к сырью. Изобутилен образует с серной кислотой грег-бутилсульфат, который находится в равновесии с водой, серной кислотой и трет-бутиловым спиртом, присутствующим в кислоте. Чем крепче кислота, тем полнее идет абсорбция изо-бутилена, но тем больше опасность, что абсорбироваться будут н-бутилены и начнется полимеризация, которую в этой стадии надо избегать. Если концентрация кислоты не превышает 70%, то нежелательные реакции не идут. Поглощение идет полнее при более низкой температуре, но при этом снижается скорость реакции. Оптимальная температура абсорбции 20—40°С. [c.77]

    Этот метод принципиально подобен методу абсорбции, и в специально подобранных условиях получают изобутилен не менее 98%-ной чистоты. [c.311]

    На основе пропилена получают изопропиловый спирт (а из него — ацетон и диацетоновый спирт) и полипропилен в количестве 20 тыс. т в год (в дальнейшем выработку полипропилена предполагают увеличить до 30 тыс. т) методом оксосинтеза получают масляный и изомасляный альдегиды (из которых производят соответственно масляную и изомасляную кислоты), бутиловый спирт и этилгексиловый спирт. Бутиленовую фракцию разделяют методом избирательной абсорбции на бутадиен, изобутилен и и-бутилены. Бутадиен используется частично для получения сополимеров со стиролом. [c.226]

    Наиболее широко используемый процесс получения спиртов из олефинов — абсорбция олефина серной кислотой с последующим добавлением воды для гидролиза образующегося сульфата. Ион карбония может атаковать воду с непосредственным образованием спирта. Абсорбция пропилена проходит более легко, чем этилена, а изобутилен абсорбируется еще легче. Концентрация используемой серной кислоты зависит от природы гидратируемого олефина. Способ гидратации олефина может быть выбран на основании относительной устойчивости ионов карбония, образующихся при протонировании. Пропилен и изобутилен дают изопропиловый и трет-бутиловый спирты соответственно  [c.132]

    Бутилены серной кислотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутил серных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобутилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85%-ной кислотой при 30° или с концентрацией 88% и выше при температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе под давлением при температуре 30—35°. При растворении в 78%-ной кислоте жидкий бутилен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой сопровождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 или бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]

    Схема дегидрирования изобутана в изобутилен в псевдоожи-женном слое катализатора аналогична схеме дегидрирования -бутана (см. рис. П1.12). Контактный газ с установки дегидрирования изобутана направляется на установку разделения, где в результате компрессии, конденсации, абсорбции и ректификации углеводородного конденсата выделяется изобутан-изобутиленовая фракция, содержащая 45—50 вес.% изобутилена. [c.217]

    Этан и этилен еще можно легко разделить, так как разница между их температурами кипения составляет 15°. Более затруднительно и менее экономично отделять пропан от пропепа, потому что их температуры кипения разнятся всего на 5,6°. Из смеси углеводородов С4 уже нельзя выделить ректификацией индивидуальных продуктов. Эти смеси можно разделить только на две группы, в одну из которых входят изобутилен, изобутан и бутен-1, а в другую — к-бутан, бутен-1 и бутен-2. Дальнейшее разделение углеводородов проводят при помощи селективной абсорбции или экстрактивной перегонки. [c.150]


    В присутствии концентрированной Н23 04 высшие олефины легче полимеризуются с другой стороны, образование эфиров серной кислоты протекает при концентрации кислоты тем меньшей, чем выше молекулярный вес олефина. Используют обычно фракцию газов крекинга, содержащую углеводороды с тремя и четырьмя атомами углерода, из которой предварительно удаляют изобутилен (абсорбцией 50%-ной Н2504) и бутадиен (экстракцией фурфуролом). [c.202]

    В горячем кислотном процессе применяется какая-либо сильная кислота, но абсорбция проводится при температуре, примерно соответствующей температуре второй ступени в холодном процессе. Абсорбция и полимеризация заканчиваются в одну ступень. Одновременно имеет место сополимеризации между нормальными бутенами и изобутиленами 3,4,4-, 2,3,3- и 2,3,4-триметил-пентены обнаружены наряду с двумя диизобутиленовыми изомерами [394]. Октановое число около 86 и при гидрировании достигает 97. [c.115]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Однако, как правило, изобутилен является весьма заманчивым товарным продуктом поэтому процесс серпокислотпой абсорбции в настояш ее время разработан настолько хороию, что при его помощи можно получать в про-мышлеппом масштабе очень чистый продукт. [c.187]

    Смесь газов, п0.пучающу70ся прн дегидрировании изобутана, очищают от водорода масляной абсорбцией и освобождают от фракции Ся в колонне стаби [изации после этого смесь состоит из 20" о изобутилена и 80% изобутапа. В Германии такой разбавленный изобутилен перерабатывали следующим образом. [c.310]

    Поэтому одноступенчатое оформление процесса не обеспечивает полного извлечения изобутилена при высокой скорости абсорбции с получением насыщенного кислотного экстракта. Двухступенчатая противоточная схема позволяет на первой ступени при сравнительно высокой температуре производить абсорбцию с большой скоростью и получать насыщенный кислотный экстракт, а на второй при более низкой температуре завершать извлечение изобутиленов. Обычно на первую ступень подают свежую фракцию и экстракт с насыщением 0,5 моля г-С4Нв/моль Н2304 при температуре 38°. Полученный кислотный экстракт с насыщением 1,5 моля г-С4Н а/моль НаЗО отводится на гидролиз для получения триметилкарбинола, а углеводородная фракция направляется на вторую ступень. Сюда подается свежая кислота, которая при температуре 13—24° насыщается до 0,5 моля -СШв/моль Н2304. Содержание пзобутилена во фракции снижается до 1 %. Эта фракция может быть использована для получения в го/)-бутилового спирта. [c.268]

    При горячем варианте этого процесса используются более высокие температуры, т. е. от 75 до 100° С. Концентрация серной кислоты равна 72% при низких температурах и 63% при 100° С. При этих условиях скорость полимеризации очень высока, абсорбция олефинов серной кислотой и полимеризация происходят в реакторе. Нет необходимости в специальном полимеризере. С другой стороны, при этих более жестких условиях обработки н-бутилены обладают способностью полимеризоваться с изобутиленом, образуя смешанные полимеры. Поэтому общий выход диизобутиленов и смешанных полимеров, как и общий выход изооктана, значительно повышается за счет неболь- [c.63]

    Процесс получения диизобутилена с применением холодной серной кислоты состоит из двух стадий — абсорбции изобутилена серной кислоюй и полимеризации. Схема процесса приведена на рис. III.2. Бутан-бутиленовая фракция с содержанием 15—20% изобутилена подается в абсорбер 1, где при 20—25°С 65%-ной серной кислотой абсорбируется изобутилен. Тепло абсорбции снимается при помощи холодильника, смонтированного в верхней части абсорбера. [c.76]

    При наличии в газах изобутилена он легко абсорбируется 60—65%-ной серной кислотой. При абсорбции изобутилена получают экстракт с насыщением 1,5 моль изобутилена на 1 моль кислоты. При этом содержание изобутилена в бутан-бутилено вой фракции снижается с 10 до 1%. После извлечения изобутилена газ идет на получение егор-бутилового спирта. Лучшие результаты получают при двухступенчатой абсорбции изобутилена. В первой ступени при 38 °С изобутилен извлекается кислотой, поступающей со второй ступени и уже имеющей насыщение 0,5 моль/моль. Во вторую ступень поступает свежая кислота, а абсорбция протекает при низкой температуре — порядка 10—20°С (до насыщения 0,5 моль моль), а из первой сту- [c.217]

    Реакция протекает при 75—85° С и является обратимой. Был разработан метод выделения изобутилена из фракции С4 заводских газов путем алкилирования — деалкилирования. Вначале барботи-руют газ, содержащий 15—30% изобутилена, через фенол до оптимальной глубины процесса алкилирования (алкилирование протекает почти селективно, так как абсорбция м-бутиленов незначительна) затем деалкилируют путем повышения температуры и с одновременным пропуском инертного газа. При нарушении равновесия протекает деалкилирование с выделением изобутилена. Изобутилен выделяют из инертного газа путем его конденсации. [c.311]

    В случае углеводородов С4 и более высококипящих наличие значительного числа изомеров, весьма близкие температуры их кипения, образование азеотропных смесей и др. делают практически невозможным разделение промышленных фракций на индивидуальные компоненты путем обычной ректификации. Этим и обусловлено то обстоятельство, что использование индивидуальных углеводородов С4, получаемых в больших масштабах в качестве побочных продуктов в процессах крекинга и пиролиза, а также возможности создания новых процессов, где применяются непредельные углеводороды С4, сравнительно ограничены. Бутилены сейчас широко используются главным образом там, где к их чистоте предъявляются не очень жесткие требования. Например, в процессе получение дивинила путем Дегидрирования бутиленов необходимо удалйть из смеси лишь изобутилен, что осуществляется абсорбцией 65%-ной серной кислотой. Для дегидрирования в дивинил можно направить смесь, состоящую из бутена-1, цис- и тра с-бутенов-2. [c.57]

    Из всех трех бутиленов наиболее активен по отношению к серной кислоте и другим реагентам изобутилен. Бутлеров исследовал реакцию взаимодействия серной кислоты различной крепости с изобутиленом. С разбавленной кислотой, содержащей 5 ч. серной кислоты и 1 ч. шды, был получен триметилкарбинол. С более концентрированной кислотой получено нерастворимое воде масло. Berthelot исследовал скорость абсорбции изобутилена серной кислотой и образование полимеризоваиных углеводородов. Фаворский и Дебу пользовались активностью иэобутилена но отношению к разбавленной серной кислоте как средством для отделения этого олефина от так называемого псевдобутилена (2-бутилена). Первый из них растворим в разбавленной серной кислоте крепостью Приблизительно 17%, в то время как второй не раств-орим. Данные [c.410]

    Относительные скорости абсорбции триметилэтилена и изопропилэтилена серной кислотой, по сравнению с абсорбцией низших олефинов, исследовали Davis и S heeler 2 . Они сообщают, что пары триметилэтилена поглощаются 80%-ной серной кислотой в 3—4 раза, а 70%-ной кислотой в 1,3 раза быстрее,, чем газообразный изобутилен. Изопропилэтилен медленно поглощается 70%-ной. серной кислотой скорост1з его абсорбции сравнима с таковой пропилена. [c.414]

    На основе изучения скоростей поглощения этилена, про пилена и изобутилена серной кислотой различных концентраций Добрянский разработал метод определения количеств этих газов в смесях путем приведения газа в последовательный контакт, во-первых, с 63—64%-ной кислотой, абсорбио ую щей только изобутилен,. во-вторых, с 83—84 .- ой кислотой, абсорбирующей пропилен и, з-третьих, с 100—102%-ной кислотой для абсорбции этилена. В видоизмененно м способе, применяемом в присутствии бутадиена, изобутилен абсорбируется 45—46%-ной кислотой, пропилен и бутадиен — 83%-ной, а этилен — слабой дымящей серной кислотой (2% 0з). Отдельная проба газа подвергается зате м [c.1205]

    Для определения и аналитическото разделения изомерных бутиленов простые методы неприменимы. Все три бутилена находятся во фракциях крекинг-газа, кипящих около 0°. Из них наиболее реакционноспособен изобутилен. Добрянский показал, что изобутилен может быть отделен от других дву х изомеров абсорбцией 63%-ной серной кислотой. Это отделение однако усложняется в присутствии некоторых других углеводородов, кипящих в тех же границах, особенно в присутствии бутадие-на. В присутствии бутадиена изобутилен лучше всего определяется абсорбцией серной кислотой меньшей концентрации, чем 60%-ная (достаточна 45—46%-ная). [c.1209]

    Frey и Yant определяли изобутилен в смесях трех бутиленов (полученных фракционировкой газа низкотемпературного коксования) абсорбцией смесью [c.1209]

    Изобутилен удаляется абсорбцией холодной 50—56%-ной серной кислотой, которая не реагирует с к-бутиленами. В кислоте такой концентрации сразу ше происходит и гидролиз третично-бутилсерной кислоты, одвако, отогнать из смеси третичньл бутиловый спирт не удается, так как он очень легко дегидратируется обратно в нзобутилен. Приходится прибегать к сильному разбавлению кислоты водой или экстрагировать спирт селективным растворителем (крезолом). [c.334]

    Лля очистки полученного продукта его тщательно промывают H2SO4 (52—53%-ной) при температуре не выше 45°. Бутадиен остается нерастворимым, а изобутилен, триметилэтилен и метилэтилеН поглощаются. Применяя абсорбцию раствором СигСЬ, получают двойное соединение бутадиена и СиаСЬ, распадающееся при 80° примеси не образуют такого продукта [c.137]

    В результате операций, описанных в предыдущем параграфе, ползгчается изобутилен различной степени чистоты. Методы дальнейшего концентрирования и удаления примесей зависят, с одной стороны, от характера последних и, с другой, — от того, для какого производства предназначается изобутилен. В некоторых случаях удается обеспечить требуемую концентрацию изобутилена в сырье с помощью обычней ректификация. Однако в подавляющем большинстве случаев ректификация служит лишь предварительный ступенью процесса получения изобутилепсодержащей фракции, из которой изобутилен должен быть извлечен либо путем азеотропной или экстрактивной дистилляции, либо нутем абсорбции, экстракции и отмывки, либо одним из химических способов. [c.81]

    Вообще для идентификации изобутилена пригодны все однозначно протекающие реакции на двойную связь, продукты которых сохраняют стабильность при очистке и анализе. Этими реакциями в настоящее время пользуются также и для количественного определения изобутилена. С реакцией присоединения брома по месту двойной связи Добрянский не получил падежных результатов. Поэтому он предложил идентифицировать изобутилен по скорости растворения в серной кислоте различных концентраций [129]. При поверхности абсорбции 19,9 см скорость растворения изобутилена по Добрянскому составляет 3,0 сж Ыин для кислоты крепостью 67,2% и 0,013 m Imuh для кислоты крепостью 22,3%. Исходя из экспериментальных работ Майкла и Брюнеля [133], Дэвис [132] и Шулер [134] рассчитали относительные скорости абсорбции и разработали методику определения удельных коэффициентов абсорбции, т. е. количество кубических сантиметров изобутилена, которое в течение 1 секунды поглощается 1 см поверхности кислоты при постоянном давлении. [c.84]

    Этилен поглощается серной кислотой медленнее, чем другие газообразные олефины (например, в сотни раз медленнее, чем изобутилен). По мере образования этилсерной кислоты (этилсульфата), в которой этилен растворяется лучше, скорость поглощения этилена увеличивается. Но в связи с тем, что в то же время уменьшается концентрация серной кислоты, общая скорость реакции снижается. Нужная степень насыщения до 0,6 моля С2Н4 на 1 моль Нз804 в верхней части абсорбционной колонны достигается для 97,5%-ной кислоты за 1 ч 15 мин, т. е. почти вдвое быстрее, чем для 95%-ной Н- ЗО (2 ч 15 мин). Следовательно, целесообразно применять 97— 98%-ную кислоту. Оптимальная температура процесса 65— 75° С. С дальнейшим повышением температуры уменьшается количество образующейся этилсерной кислоты. Влияние давления на абсорбцию этилена представлено на рис. 76. С повышением давления возрастают скорость абсорбции и степень насыщения серной кислоты этиленом. Большое значение для процесса имеет интенсивность перемешивания. В производстве применяют барботажные колонны, эбеспечивающие более сильное перемешивание, чем насадочные башни. В ходе второй стадии идет гидролиз этил- и диэтилсульфата [c.191]


Смотреть страницы где упоминается термин Изобутилен абсорбция: [c.191]    [c.189]    [c.297]    [c.466]    [c.568]    [c.32]    [c.158]    [c.411]    [c.422]    [c.15]    [c.28]    [c.57]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.384 , c.1205 ]




ПОИСК





Смотрите так же термины и статьи:

Извлечение изобутилена из газовых смесей путем абсорбции, экстракции, отмывки

Изобутилен

Изобутилен абсорбция медноаммиачным раствором

Изобутилен, абсорбция из пузыре

Изобутилен, окись, хлор метилпропанол из нее скорость абсорбции серной кислото



© 2024 chem21.info Реклама на сайте