Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирование препаративное

    Детальное обсуждение достоинств различных методов, используемых для фракционирования полимеров, выходит за рамки данной книги. Большинство этих методов достаточно сложно и требует длительного времени, причем число получаемых при разделении фракций в значительной степени зависит от продолжительности фракционирования. Следует различать препаративное фракционирование, когда осу-щ,ествляется разделение полимера на фракции с последующим определением молекулярной массы каждой фракции, и аналитическое фракционирование, при котором определяется молекулярно-массовое распределение без выделения каждой отдельной фракции. В первой группе методов следует упомянуть новую быструю методику фракционирования с помощью гель-проникающей хроматографии. В этом методе разделения используется хроматографическая колонка, в которой в качестве стационарной фазы применяют пористый набухший полимер сетчатого строения. По мере прохождения полимерного раствора по колонке молекулы полимера диффундируют через гель в соответствии с их размерами. Молекулы небольшой длины глубоко проникают в гель, и, следовательно, для их прохождения через колонку тре- [c.239]


    На самом деле в процессе титрования степень набухания выделившихся частиц может изменяться, так как она зависит от состава смеси растворитель — осадитель. Кроме того, возможны агрегация и коагуляция частиц. Поэтому мутность обычно зависит от условий проведения эксперимента от скорости добавления осадителя, объема добавляемых порций, скорости перемешивания раствора и др. Ни при какой практически приемлемой скорости титрования процесс не удается провести равновесно. Тем не менее воспроизводимые результаты можно получить, если добавлять осадитель медленно, непрерывно, строго одинаковым способом, поддерживая и все остальные условия постоянными. В таком варианте метод Турбидиметрического титрования широко используется для качественной Характеристики ММР. Ценной особенностью метода является его быстрота и возможность работы с очень малыми количествами полимера. Метод оказывается полезным, в частности, при подборе систем растворитель — осадитель для препаративного фракционирования, при оценке изменений, происшедших в полимере под влиянием внешних воздействий (тепла, света, механических напряжений и др.), для качественной оценки ММР, иногда достаточной при изучении механизма полимеризации и т. д. [c.96]

    С рождением сорбционных и особенно хроматографических методов в распоряжении исследователей оказались самые эффективные пз современных средств фракционирования. Разработка широкого круга разнообразнейших сорбентов, твердых носителей и стационарных жидких фаз, препаративного и аналитического [c.14]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]


    Большинство полимеров неоднородно с точки зрения молекулярного веса. Распределение по молекулярному весу оказывает большое влияние на физические и механические свойства полимера. Одним из экспериментальных методов определения молекулярновесового распределения является разделение полимера на фракции, каждая из которых будет более однородной по молекулярному весу, чем исходный образец. Фракционирование осуществляется различными методами некоторые наиболее важные из них будут рассмотрены в этой главе. Различают два типа фракционирования препаративное, при котором фракции выделяют, так что их свойства могут быть исследованы, и аналитическое, при котором получают кривую распределения, не выделяя отдельных фракций. [c.34]

    Для фракционирования применяют также способ постепенного понижения температуры при постоянном составе жидкости. Препаративное разделение высокомолекулярных соединений широко применяется при научных исследованиях для характеристики полидисперсности полимеров. [c.383]

    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Метод ГПХ позволяет проводить как аналитическое, так и препаративное фракционирование в интервале молекулярных масс от нескольких десятков до нескольких миллионов. [c.98]

    Седиментационный метод используют не только для анализа дисперсности, но и для препаративного выделения отдельных фракций суспензии. Эта весьма важная для практических целей задача решается обычно путем фракционирования в конусах методом восходящей струн. Суспензию помещают в конус, после чего в нижнюю его часть (рис. 7) с постоянной объемной скоростью р подают дисперсионную среду (обычно воду). Линейная скорость поднимающихся частиц и постепенно уменьшается и становится наименьшей в наибольшем сечении конуса с радиусом /  [c.49]

    В 50-Х-60-Х годах сведения о ММР ПЭВД получали с помощью препаративного фракционирования с последующим определением молекулярных масс фракций. Проведение фракционирования при температуре выше температуры кристаллизации полимера в растворе и выделение достаточно большого числа (не менее 20) фракций обеспечивает удовлетворительное фракционирование ПЭВД по молекулярной массе, а отсутствие большой полидисперсности позволяет избежать ошибок в определении молекулярной массы фракций названными выше методами. Все это является залогом успешного определения ММР ПЭВД с помощью фракционирования, однако длительность и трудоемкость анализа делают нежелательным применение зтого метода. [c.134]

    Газо-жидкостная хроматография. Газо-жидкостная хроматография является частным случаем распределительной хроматографии. Этот метод приобрел огромное значение для аналитических целей, но его все больше приспосабливают и для препаративного разделения веществ. Как и в бумажной, в газо-жидкостной хроматографии фракционирование разделяемых веществ происходит между двумя фазами — стационарной и движущейся, но в качестве движущейся фазы применяется индифферентный газ — обычно азот. Стационарной фазой для разделения высококипящих веществ служат высококипящие и достаточно стойкие при нагревании растворители — парафины, низкоплавкие многоядерные ароматические углеводороды типа бензилдифенила, эфиры фталевой кислоты и чаще всего полисилоксаны. Для разделения газов или низкокипящих веществ применяют, наиример, формамид. Стационарную жидкую фазу наносят на твердый носитель — обычно кизельгур (на 1 г кизельгура 0,5 г жидкости), пористый 8102 или дробленый силикатный кирпич. Схема прибора приведена на рис. 18. [c.43]

    Высаливание — общедоступный метод для препаративного фракционирования гуминовых кислот. Ход фракционирования следующий к раствору гумата натрия с pH 6 добавляют концентрированный раствор [c.243]

    Для получения чистых соединений рубидия и цезия широко используется метод фракционированной кристаллизации алюмо-цезиевых и алюмо-рубидиевых квасцов (квасцовый метод), нитрата цезия и хлората рубидия. Этот относительно хорошо изученный метод наиболее доступен как для препаративных, так и для технологических целей. [c.334]


    Распределение полимеров по молекулярной массе определяют методами аналитического или препаративного фракционирования. Более подробно фракционирование полимеров по молекулярной массе в приложении к целлюлозе (методы, конкретные методики и обработка результатов с целью графического представления ММР) рассматриваются в учебном пособии [30]. [c.173]

    Методика получения и анализа функций ММР полиокса еще, ао существу, не отработана. Применение традиционных методов препаративного фракционирования в различных системах растворитель — осадитель либо при понижении температуры [142] наталкивается на ряд серьезных трудностей, связанных со спецификой выделения кристаллизующихся полимеров. Лишь в условиях жидкофазного разделения выше точки плавления полимера возможно получение правдоподобных результатов. На базе этого в последнее время создан новый метод получения функций ММР — осаждение полимера из водно-солевых смесей при повышении температуры [143]. [c.271]

    Область применения. Препаративное фракционирование пептидов, микроструктурный анализ белков и полипептидов. [c.199]

    Для препаративного фракционирования рекомендуется использовать сферические ионообменники. Ими легче заполнять колонку, они быстро оседают при отмывании декантацией и обеспечивают постоянную скорость протекания раствора через колонку в отличие от волокнистых и гранулярных носителей, которые вызывают снижение скорости протекания в процессе хроматографии. [c.214]

    Фракционирование. Препаративное разделение ЛС на фракции производилось на колонке ( 1 = 160 см 2 31 мм) с сефадексом О- 75. Эпюентом служила вода. Для гель-фильтрации бралось 40 60мл образца 3 - 5%-ного раствора ЛС -Ма. Скорость элюирования поддерживалась постоянной и сос- [c.170]

    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Помимо аналитических целей (определение молекулярных масс) ультрацентрифуги применяют в препаративной работе для фракционирования веществ с различной молекулярной массой. [c.156]

    В препаративной микротехнике обычно работают с количествами веществ менее 0,1 г. Вследствие специфических физических свойств жидкости разделение таких малых количеств смеси сопряжено со значительными трудностями. Поэтому к микрометоду I ректификации относят разделение смеси в количестве до 5 мл, а к полумикрометоду — в количестве до 50 мл. При этом необходимо проводить четкое разграничение между простой дистилляцией, фракционированной (дробной) разгонкой и ректификацией. [c.218]

    Оптимальным вариантом между крупным зернением (преимущества которого — равномерность заполнения, небольшое сопротивление потоку газа и малая величина времени удерживания) и возможно меньшей величиной р и, следовательно, А является зернение 0,05—0,8 мм, причем особенно в интервале 0,15—0,30 мм. Чтобы повысить разделительную способность колонки, можно из этих фракций путем дальнейшего фракционирования получить фракции 0,15—0,18 0,18—0,25 и 0,25—0,30 мм. Каждая из этих фракций дает хорошие результаты разделения последняя фракция, по данным Бекера, Ли и Уолла (1961), имеет особые преимущества при больших скоростях потока газа (более 100 мл1мин). Эти величины, рекомендуемые для аналитических колонок, совпадают с данными исследований, проведенных для препаративной газовой хроматографии с целью изучения соотношений между максимальной производительностью и минимальным временем удерживания. Битей (1962) нашел, в частности, что самое короткое время удерживания, исправленное с учетом перепада давления, получают тогда, когда отношение диаметра колонки к диаметру частиц составляет около 25. Для обычно применяемых в аналитических целях колонок диаметром 6 мм это соответствует величине зерна 0,24 мм. [c.77]

    Известно много методов препаративного фракционирования, пз которых наибольшее распространение получили методы, основанные на различной растворимости полимеров разного молекулярного оеса. Изменения растворимости полимера можно достигнуть либо варьируя состав рас1я0рителя, либо понижая температуру раствора. [c.333]

    В этом варианте в колонку или па стартовую линию хроматографической пластинки наносят определенную порцию раствора исходной смеси веществ, а затем ведут элюцию раствором вещества, обладающего заведомо большим сродством к неподвижной фазе хроматографической системы, чем любой из компонентов смеси. Происходит вытеснение их пз неподвижной фазы, причем в первую очередь тех, которые обладают меньшнм сродством к сорбенту, а затем и всех остальных. Элюеит выталкивает все компоненты смеси впереди себя наподобие поршня. Так как они выходят в подвижную фазу концентрированными, то между ними также идет конкуренция за связь с неподвижной фазой. Компоненты, уступающие другим в силе сродства к этой фазе, оттесняются еще вперед, где сорбируются, но только до тех пор, пока их опять не вытеснят компоненты, обладающие большим сродством к сорбенту. В результате такого чередования сорбции и вытеснения компоненты смеси будут выходить из колонки один за другим в порядке возрастания силы их связи с неподвижной фазой. Ясно, что при этом зоны соседних компонентов будут соприкасаться или даже немного перекрываться друг с другом. Для аналитического фракционирования метод непригоден, но хорош для препаративного или полупромышленного разделения веществ, поскольку емкость колонки здесь используется очень эффективно. [c.12]

    Тонкослойная хроматография (ТСХ английское TL ) и предшествовавший ей метод хродгатографии на бумаге до середины 70-х годов занимали центральное место в исследованиях структуры белков и нуклеиновых кислот. В последнее десятилетие эти методы были явно оттеснены электрофорезом и высокоэффективной жидкостной колоночной хроматографией при высоком давлении. Оба метода превосходят ТСХ но разрешающей способности, а второй из них — и по скорости анализа. Кроме того, в результате ЖХВД экспериментатор получает уже разделенные жидкие фракции исходного препарата, в то время как после ТСХ ему надо еш,е локализовать пятна на пластинке, а в случае необходимости дальнейшего анализа — выполнить длительные операции элюции из них веш,ества. Точное и проводимое в ходе самого фракционирования определение микроколичеств вещества во фракциях прп ЖХВД, которое позволяют осуществить высокочувствительные детекторы и интегрирующие устройства современных жидкостных хроматографов, оставляет далеко позади соответствующие возможности ТСХ — ввиду плохой воспроизводимости процессов элюции из пятен и высокого уровня фона или самопоглощения в слое носителя при использовании оптических, флюоресцентных и радиоактивных методов оценки количества вещества в пятнах на пластинке без его элюции. Наконец, в препаративном варианте фракционирования количественные возможности ТСХ на несколько порядков меньше, чем у обычной колоночной хроматографии и даже у электрофореза. [c.457]

    Наиболее эффективным и широко применяемым методом фракционирования сложных смесей липидов является хроматография. Главную роль при аналитическом фракционировании играет адсорбционная хроматография в тонком слое сорбента. Этот метод также применяется в препаративных целях, когда разделению подвергается небольшое количество липидов (50—300 мг). Если масса липидов превышает 300 мг, используют колоночную хроматографию, хотя по разделяющей способности и времени разделения этот метод часто уступает тонкослойной и газовой хроматографии. Однократного хроматографирования обычно бывает недостаточно для выделения индивидуальных веществ, в связи с этим полученные фракции подвергают препаративной тонкослойной хроматографии или колоночной хроматографии другого типа. При колоночрюй хроматографии липидов используют не только принцип адсорбции, но и принцип распределения между двумя несмеши-вающимися жидкостями, гель-фильтрации, ионного обмена. [c.69]

    Наряду с достоинствами поверхностно-пористых сорбентов (возможность упаковки в колонки сухим способом, легкость фракционирования, широкий ассортимент привитых и нанесенных фаз) обнаружились их серьезные недостатки. Главными следует считать малую емкость по пробе, связанную с малой поверхностью сорбента в колонке (основной объем сорбента занимает непористое ядро, не участвующее в разделении), большое гидравлическое сопротивление длинных колонок, их малую производительность и быструю перегрузку в препаративной работе, сложную технологию получения сорбентов и их высокую цену, недостаточную эффективность колонок и длительность анализа. [c.87]

    Недавно предложено [30] заменять раствор УМЦ буферным раствором 0,1М трис-НС1, pH 8,4 с 2 % ДДС-Na, который эффективнее для экстрагирования белков и лучше приспособлен к их фракционированию гель-фильтрацией и электрофорезом. Для извлечения глиадинов и глютенинов с невосстановленными дисульфидными связями из обезжиренной муки рекомендуются [56] буферные растворы с нейтральным pH, содержащие ДДС-Na. Благодаря простоте этот метод экстрагирования в данном случае представляется подходящим для их препаративного извлечения. [c.179]

    Для химически однорсханого полимера молекулярно-массовое распределение можно определить по экспериментальной зависимости простым расчетом. Турбидиметрическое титрование используют для ориентировочного устаноБления условий фракционирования (например, выбор пары растворитель — осадитель, величины фракции и т. д.), которое предшествует собственно препаративному фракционированию осаждением. [c.82]

    Если проанализировать состав каждой из фракций, можно получить интегральную кривую распределения по составу (ИКРС), дающую полную количественную информацию о неоднородности по составу анализируемого образца [ 13] и массовую долю фракции любого состава. Поскольку при построении ИКРС не исключено искажение неоднородности по составу анализируемого образца за счет полидисперсности отдельных фракций, то для получения достаточно объективной картины число анализируемых фракций должно быть достаточно велико, больше 10-12, Препаративные хроматографические методы позволяют существенно повысить это число современная хроматографическая техника позволяет обойтись вообще без материального фракционирования. [c.332]

    Для препаративного фракционирования лигнинов использовали электродиализ, ступенчатое извлечение из древесины, ступенчатое осаждение из растворов, элюирование из хроматографических колонок, а для аналитического фракционирования - ультрацентрифугирование, турбиди-метрическое титрование и эксклюзионную жидкостную хроматографию. При изучении молекулярно-массовых характеристик препаратов лигнина привлекались практически все методы определения молекулярной массы полимеров. [c.413]

    Использование ступенчатых градиентов. Как отмечено в разд. 1.2.3 и на рис. 1.3, препаративную ЖХ можно использовать как быстрое средство выделения или обогащения классов соединений в условиях ступенчатого градиента. Иногда для простых смесей на этом может быть закончена необходимая очистка (см. пример на рис. 1.27). В других случаях для разделения сложного образца с компонентами, сильно отличающимися по полярности, может быть необходимо использовать многоступенчатую последовательность. Если оставить в стороне вопросы, связанные с растворимостью образца (см. разд. 1.6.2.2.6), то в адсорбционной ЖХ с помощью комбинации только четырех растворителей можно создать последовательность восьми градиентных ступеней и быстро разделить образец на фракции, которые затем можно индивидуально очистить в изократическом режиме. В каждой фракции спектр компонентов будет перекрывать диапазон к примерно только на 5—10 единиц. При скорости 1 мертвый объем в минуту процесс разделения, показанный в табл. 1.8, потенциально может быть закончен менее чем за 20 мин. Размер колонки может быть выбран в соответствии с имеющимся в наличии образцом. Для быстрого фракционирования образца можно аналогичным образом достаточно эффективно использовать градиентные схемы и в других методах разделения (ионный обмен, аффинная хроматография, распределение и т.д.). Классическая колоночная хроматография на открытых колонках часто выполнялась с использованием ступенчатого градиента, создаваемого элюотроп-ным рядом, подходящим для используемой неподвижной фазы. Однако, поскольку приготовление хорошей препаративной ЖХ-колонки требовало искусства и длительного времени. [c.100]

    В особо трудных случаях, или когда компоненты образцов сильно отличаются по полярности и растворимости (требуется ступенчатый градиент), может стать необходимым нредадсор-бировать их на части неподвижной фазы. Для этого растворяют образец в хорошем растворителе, обычно намного более сильном, чем растворитель, который может быть использоваи в качестве подвижной фазы. Затем полностью адсорбируют этот раствор на достаточном количестве неподвижной фазы. Путем тщательной сушки, например с помощью роторного испарителя под вакуумом и осторожного нагревания, удаляют все следы растворителя, чтобы покрыть насадку образцом. При этом надо быть осторожным и не допустить разложения образца. Затем сухой материал помещают на вход препаративной ЖХ-колонки или в отдельную колонку, подсоединенную к входу первой колонки. Затем через колонку пропускают подвижную фазу или проводят элюирование с помощью ступенчатого градиента. Такая методика достаточно хороша для фракционирования образца при условиях градиента, однако не дает хороших разделений в изократических системах. Медленное растворение компонентов образца приводит к интенсивному расширению полосы, размыванию фронта пика (ср. разд. 1.4.42), и результаты редко бывают удовлетворительными. В таких случаях попытайтесь найти лучшее средство разделения (например, ситовую хроматографию с использованием подходящего раствори-теля в качестве подвижной фазы). [c.103]

    Выделение стильбенов проводится с помощью фракционирования в несмешивающихся растворителях, хроматографических методов, характерных для фенольных веществ с использованием силикагеля, полиамида и других сорбентов. Растительные стильбены препаративно разделяют методом жидкостной хроматографии. Этим же методом проводят их количественное определение [9, 10]. На бумажных хроматограммах под действием ультрафиолетового света стильбены окрашиваются в различные [c.38]

    При анализе молекулярно-массового расиределения полиокси-пропиленполполов в последнее время широко используют хроматографические методы. Гельхроматография является наиболее экспрессным способом для получения кривых ММР и дает результаты, удовлетворительно согласуюш иеся с данными препаративного фракционирования ([80], рис. 95). [c.245]

    ДЭАЭ-целлюлоза благодаря своей функциональной группе — диэтиламиноэтильному остатку — обладает свойствами слабого анионообменника. Ее используют главным образом для разделения природных высокомолекулярных полимеров, особенно чувствительных к резким изменениям pH и температуры, т. е. в первую очередь для фракционирования белков. Хроматография на ДЭАЭ-целлюлозе отличается высокой разрешающей способностью. Этот ионообменник пригоден как для аналитического, так и- для препаративного фракционирования белков на колонках соответствующего размера. [c.204]

    Проведя соответствующие предварительные опыты, можно рассчитать оптимальные размеры колонки для препаративного разделения больших количеств белка. Чтобы обеспечить оптимальную скорость протекания жидкости через колонку и тем самым достаточно быструю хроматографию, увеличивать объем колонки следует в первую очередь за счет увеличения ее диаметра. ДЛ4Я фракционирования 1,0 г белка со средним молекулярным весом достаточно иметь колонку 3,5 х 45 см. [c.205]

    Б. Выбор размеров колонки. Для фракционирования 100 мг белка или полипептида при использовании КМ-целлюлозы, имеющей емкость 0,7—0,8 мэкв/г, требуется колонка 1,5 х 35 см. Препаративное разделение 1,0 г белка можно проводить на колонке 3,5x45 см- [c.212]


Смотреть страницы где упоминается термин Фракционирование препаративное: [c.252]    [c.307]    [c.115]    [c.160]    [c.174]    [c.174]    [c.176]    [c.234]    [c.324]    [c.411]    [c.463]    [c.62]    [c.186]   
Фракционирование полимеров (1971) -- [ c.107 , c.108 , c.148 , c.151 ]




ПОИСК







© 2025 chem21.info Реклама на сайте