Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографический пик детектирования

    Калмановский В. И. К вопросу об определении постоянной времени системы хроматографического детектирования. Сб. Газо вая хроматография, ред. Сакодынский К. И., НИИТЭХим, М., вып. 1, с. 76—79. [c.135]

    В рутинных анализах газов в металлах и сплавах на уровне долей частей на миллион комбинация экстракция — масс-спектрометрия имеет небольшие преимущества по сравнению с другими более удобными методами, такими, как плавка в инертном газе в сочетании с хроматографическим детектированием. Определение состава образцов является необычайно трудной задачей Это обусловлено необходимостью использования высокого вакуума, сложностью анализа смесей окись углерода—азот, трудностью идентификации углеводородов и высокой стоимостью аппаратуры. Этот метод не следует применять в рутинных анализах. [c.397]


    Газохроматографические измерения на напористых адсорбентах [27, 40] и даже на кристаллических тонкопористых (например, на цеолитах) [55] при соблюдении необходимых предосторожностей и оптимизации динамических и кинетических факторов работы колонны позволяют получить значения константы Генри, близкие к находимым путем экстраполяции равновесных изотерм адсорбции, определенных статическими методами [166, 167]. Значительным преимуществом элюционного газохроматографического метода является возможность исследования изотермы адсорбции при малых заполнениях поверхности благодаря высокой чувствительности детекторов. Методом фронтальной газовой хроматографии, например с последующей тепловой десорбцией при регулировании концентрации адсорбата в газовой фазе с помощью термостатирования жидкого адсорбата, насыщающего газ-носитель, можно объединить преимущество статического метода (заведомое достижение равновесия) с высокой чувствительностью хроматографического детектирования [161]. Элюционный метод удобнее использовать при более высоких температурах, а метод тепловой десорбции — при обычных и более низких. [c.67]

    В систему хроматографического детектирования входят собственно детектор, измерительная схема и регистрирующее устройство. Инерционность системы определяется быстродействием всех перечисленных элементов. [c.76]

    Таким образом, постоянную времени системы хроматографического детектирования можно найти сложением постоян- [c.78]

    Хроматографическое детектирование утечки жидкости. (Определение скорости утечки запечатанного масла.) [c.239]

    Последовательность сигналов детектора, записанная на ленте или зафиксированная иным способом при прохождении анализируемой смеси веществ через хроматографическую колонку, образует хроматограмму. При интегральном детектировании, когда детектор фиксирует общее количество вышедших из колонки компонентов, хроматограмма представляет ряд ступеней, при дифференциальном детектировании—ряд полос или пиков. При данном режиме работы колонки время выхода пика является однозначной характеристикой выходящего компонента. Предварительная [c.548]

    Одним из важнейших узлов хроматографической установки является детектор — устройство, позволяющее фиксировать наличие хроматографируемых веществ на выходе из колонки. Можно утверждать, что успехи современной газовой хроматографии в значительной степени связаны с достижениями в области детектирования [3, с. 255]. [c.97]


    Система детектирования хроматографа — устройство, измеряющее и регистрирующее результаты хроматографического анализа. Система детектирования состоит из трех элементов — детектора, усилителя и регистратора. [c.239]

    Размеры собираемых фракций элюата (элюента, прошедшего через колонку) зависят от условий опыта (величины колонки, объемов элюирующих растворов, числа возможных хроматографических зон и метода детектирования). Например, для УФ-спектрофото- [c.360]

    Таким образом,из-за различий в структуре молекул изомеров и вызываемых ими различий в характере и степени внутримолекулярного напряжения при низкой энергии электронного удара в ионном источнике масс-спектрометра фрагментация молекул изомеров идет различными путями. Это можно использовать как для суждения о структуре молекул изомеров, так и для хроматографического разделения их смесей при использовании масс-спектрометра в качестве детектора, особенно при детектировании по отдельным, образующимся при фрагментации ионам. [c.24]

    Детекторы. Наличие и количественное содержание хроматографируемых веществ в газе-носителе определяют с помощью детекторов, в основу работы которых положены физические или химические методы. Детектор является одним из важнейших узлов хроматографической установки. Существующие способы детектирования подразделяют на дифференциальные и интегральные. Детектор, измеряющий концентрацию раствора в каждый данный момент, называют дифференциальным детектором. Интегральный Детектор непрерывно измеряет суммарное количество пробы, вышедшее из колонки с момента начала анализа. [c.292]

    В 60-х годах с развитием высокочувствительных методов детектирования, созданием специальных носителей и сорбентов, углублением понимания механизма происходящих в хроматографической колонке процессов появилась возможность резко увеличить скорости разделения и сократить время проведения анализов до нескольких минут и даже секунд. [c.40]

    Если на выходе из колонки регистрировать изменение во времени какого-либо физического свойства газового потока (так называемое дифференциальное детектирование, подробнее см. раздел П.1.4.1), то выходная хроматографическая кривая—хроматограмма — запишется в виде более или менее острых пиков, возвышающихся над нулевой (базовой) линией, уровень которой по окончании анализа, как правило, соответствует исходному ее положению до начала анализа (рис. 1.1, б). Таким образом, сразу же по [c.7]

    Основными характеристиками хроматографических детекторов являются чувствительность и предел детектирования, линейность, быстродействие, селективность. [c.38]

    Отметим, что введение в хроматографическую колонку проб, содержащих большое количество воды, может привести к разрушению (гидролизу) некоторых неподвижных фаз и осложнениям в детектировании (ДЭЗ), [c.160]

    Очевидно, что вариант б возможен лишь при условии, что детектор, соединяемый непосредственно с колонкой, является недеструктивным (как, например, детекторы по теплопроводности или плотности). При построении схемы необходимо учитывать возможность дополнительного размывания хроматографических зон в соединительных линиях после колонки (ухудшение разделения компонентов смеси, снижение чувствительности детектирования). Следует также иметь в виду возможные различия в абсолютной чувствительности выбранных детекторов (что определяет требуемую чувствительность регистрации сигнала каждого детектора и различную степень деления газового потока на выходе из колонки — в первом варианте схемы). [c.197]

    Отличительные особенности фурье-спектроскопии как метода детектирования и установления структуры разделенных в хроматографической колонке соединений заключаются в следующем [37, 67, 681. [c.207]

    Нормирование неисправленных количественных параметров хроматографических пиков приводит к содержаниям, не являющимся, строго говоря, ни массовыми, ни объемными, ни молярными. Степень приближения получаемых содержаний к названным определяется нормируемым параметром пика, природой анализируемых соединений и принципом детектирования. В настоящее время принято считать, что при работе с катарометром и ДИП нормирование неисправленных площадей пиков в большинстве случаев дает результаты, приближающиеся к массовым содержаниям. Однозначность единиц выражения концентрации достигается лишь при введении в расчетную формулу соответствующих нормировочных (градуировочных) множителей / . [c.226]

    Капиллярная хроматография характеризуется рядом существенных особенностей в методике и аппаратуре практически на всех стадиях хроматографического анализа — от приготовления колонок и введения пробы до детектирования разделенных компонентов. Ко- [c.336]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]


    Флюидную хроматографию следует рассматривать как идеальшй мостик между газовой и жидкостной хроматофафией. Предусмотренй комбинация достоинств конденсированной подвижной фазы и высокочувствительного и селективного газа хроматографического детектирования. Область применения флюидной хроматофафии включает соединения, важные с точки зрения анализа объектов окружающей среды, науки о жизни, лекарственных прецаратов. [c.461]

    КИ постепенно опускались в печь, нагретую до 200—220° С. (Опыты показали, что температура ниже 200° С не обеспечивает достаточно полную десорбцию пропилена. Разделение при более высоких температурах может привести к побочным реакциям в нагретой зоне.) На выходе из колонки и из отдельных ее секций в течение всего опыта отбирались пробы газа, состав которых определялся хроматографически. Детектирование компонентов смеси осуществлялось при помощи катарометра или ионизационного детектора с прометиевым источником [9]. [c.201]

    Применяемые в настоящее время хроматографические детекторы позволяют проводить количественный анализ для большего числа как органических, так и неорганических соединений с температурами кипения иримеррю до 400° С. Непрерывно совершенствуются старые и разрабатываются новые универсальные детекторы для анализа этих соединений. Однако наряду с универсальными необ.ходн-мы также и селективные детекторы, облегчающие проведение анализов сложных смесей и идентификацию компонентов. Большие успехи достигнуты в развитии высокочувствительных методов детектирования. Полученные показатели по чувствительности (10 % и менее) не являются пределом и могут быть улучшены главным образом за счет уменьшения уровня шумов и применения ЭВМ для обработки данных. Громадные достижения в теории и практике хроматографического детектирования в значительной. мере определили прогресс всей газовой хроматографии, наблюдаемый за последние десять лет. Несмотря иа это, все же можно сказать, что по тем или иным причинам [c.152]

    Атомно-абсорбционный детектор (ААД) чаще всего используют для определения очень токсичных металлорганических соединений (МОС), особенно алкильных соединений ртути и свинца в объектах окружающей среды [101, 104—106]. При детектировании на длине волны 283,3 нм С свинца в его алкильных производных составляет 20 нг, а для твердых образцов — 0,01-0,025 мкг/г [4]. Предварительное концентрирование алкильных соединений свинца дает возможность определять их в воздухе в концентрациях 0,07 мкг/мЗ. Для аналогичных целей используют и метод беспламенной ионизации, предусматривающий превращение различных алкильных соединений свинца, например, тетраэтилсвинец (ТЭС), в бутилпроизводные по реакции Гриньяра, атакже превращение ди- и триалкилпроизводных в дитиокарбаминаты [107]. Примером элементспецифического хроматографического детектирования с помощью ААД может служить хроматограмма органических соединений олова, приведенная на рис. УПГ24. [c.444]

    При хроматографическом детектировании определяли вольт-амперные характеристики детектора и зависимости сигнала (высоты пика) от концентрации различных веществ (от объема анализируемой пробы) для различных напряжений. Ток насыщения (начальный ток /о) макроаргонового детектора при температуре 50° С составлял 8,4-10 а и оставался постоянным в интервале напряжений 80—500 в. Зависимость высоты пика от объема анализируемой пробы определяли при напряжениях 600, 800, 1000 и 1200 в, т. е. в режиме ионизационного усиления. Исходные смеси содержали пропан, пропилен, изобутан и н-бутан. Полученные результаты были обработаны следующим образо 1, [c.72]

    Зависимость пбстоянной времени т системы хроматографического детектирования от постоянных времени Т] детектора и Тг измерительной схемы. [c.79]

    Очевидно, что и для капиллярных колонок имеется оптимальная ск(>-рость газа, при которой значение Н минимально. Отметим также, что размывание хроматографической полосы, характеризуемое величинами ап. и Н. быстро растет с ростом диаметра капилляра. Однако слишком сильное сужение капилляра при том же перепаде давления газа в капилляре приводит к резкому снижению скорости газа и, вследствие чего увеличивается значение Н [ввид роста члена BJu в уравнении (112)]. Кроме этого, снижение скорости и ведет к нежелательному увеличению времени анализа. Наряду с этим, с уменьшением диаметра колонки адсорбирующая поверхность стенок или количество нанесенной жидкости (при сохранении толщины ее пленки) сокращается. Поэтому максимальная нагрузка колонки (т. е. величина вводимой в колонку пробы) должна быть сильно уменьшена, а это влечет за собой большие трудности, связанны с быстрой и точной дозировкой малых проб у входа и детектированием малых концентраций компонентов у выхода из колонки. Поэтому выбирается некоторый оптимальный диаметр капиллярной ко. юнки около 0,3 мм. [c.588]

    Поглощение кислорода раствором пирогаллола А из газа, предварительно освобожденного от кислотных компонентов определение количества поглощенного кислорода Определение производится на газоанализаторе типа ГХЛ определяются сумма кислотных газов (СО,, 50о, НгЗидр.) сумма непредельных углеводородов О2 СО Нз сумма предельных углеводородов и На Хроматографическое разделение компонентов природного газа сочетанием парожидкостной и газо-адсор бционной хроматографии и газохроматографического детектирования разделенных компонентов смеси определяется содержание Н,, Не, N2, О,, СО,, СН , СзНв, зНв, изо-С Нщ, Н-С4НЮ, 30-СдН 2> [c.60]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    Немаловажное значение для развития газовой хроматографии имеет разработка теории хроматографического процесса, а также теория детектирования и интерпретации хроматографических данных. В разработку теории немалый вклад внесли советские ученые А. А. Жуховицкий, Н. М. Туркельтауб, А. В. Киселев, В. Г. Березкин, М. С. Вигдергауз и др. Из зарубежных ученых следует назвать Мартина, Кейлеманса, Байера, Гиддингса, Литтлвуда, Кайзера, Янака, Шая, Филиппса, Ковача. [c.3]

    Принцип действия хроматографических детекторов может быть самым разным, поэтому их трудно сравнивать. Однако существует несколько общих критериев — селективность, чувствительность, реакция, щум, нижний предел детектирования (наименьщее детектируемое количество) и линейность отклика. Для количественной работы почти каждый детектор требует калибровки, необходимой для определения поправочных коэффициентов. [c.232]

    В аналитической реакционной газовой хроматографии сочетаются два метода анализа — х[ оматографический и химический, т. е. на всех ступенях хроматографического анализа — от введения пробы до детектирования--используются химические реакции. Метод реакционной газовой хроматографии применяется в тех случаях, когда использование обычной газовой хроматографии невозможно или связано со значительными трудностями, например, для анализа полимеров, в элементном анализе и т. п. [c.281]

    Серьезным недостатком большинства конструкций ПФД является гашение пламени детектора дозами элюируемого вещества, характерными для насадочных колонок (несколько микролитров). Резкое снижение по этой причине максимально вводимой в хроматографическую колонку дозы повышает предел детектирования ПФД. Для его снижения применяются сложные системы выброса пика растворителя или поддержания горения пламени. [c.74]

    Для исключения прогрессирующего дрейфа нулевой линии испол , уется сочетание двухколоночной газовой схемы с компенсационным детектированием. Сущность его состоит з одновременном использовании двух идентичных хроматографических колонок, работающих в одном режиме и соединенных с двумя одинаковыми ка.мерами детектора В процессе повышения темпера- [c.80]

    Конструкция микро-пламепно-ионпзационного детектора обеспечивает возможность высокочувствительного детектирования органических соединений, разделенных на капиллярной хроматографической колонке. [c.110]

    Если требуется определить содержание каждого компонента в смеси, то условия анализа должны обеспечивать линейное детектирование и по возможности полное отделение всех ее составляющих друг от друга, поскольку погрешность в измерении площади или другого количественного параметра хроматографического пика хотя бы одного компонента (или приписание ошибочного значения / хотя бы одному компоненту) приведет к неправильной оценке содержания в образце всех составляющих. [c.228]

    Хроматографический анализ с дифференциальным выделением сигнала (ДВС) может быть реализован с любой системой детектирования. Принцип дифференциального преобразования сигнала детектора, приводящего к регистрации дериватограмм с хорошо разделенными пиками при недостаточном разделении анализируемых соединений в колонке [81 1, иллюстрируется на рис, 111,26—111.28, На рис. 111.26 показан совмещенный хроматографический пик, составленный из частично разделенных компонентов 1 и 2 и включающий зоны (левее линии пп и правее лмни 1 тт ). принадлежащие практически чистым компонентам 1 и 2 соответственно, Дифференцирование [c.244]

    Недостатки хроматографического анализа с ДВС и их преодоление. Для компонентов с малым временем удерживания предел обнаружения, как правило, ниже, чем в обычном анализе, однако чувствительность хроматографического анализа с ДВС уменьшается с увеличением времени удерживания, иными словами, высота пика на дериватограмме убывает пропорционально квгдрату его ширины, т. е. значительно быстрее, чем на обычных хроматограммах. Отмеченный недостаток легко устраняется при использовании ДВС и программирования температуры колонки. Такое сочетание позволяет отказаться от двухколоночной схемы и регистрации разностного сигнала двух параллельных ячеек детектора. Даже при использовании одной колонки практически полностью устраняется дрейф нулевой линии, связанный с возрастающим по мере повышения температуры фоновым сигналом, и снижается (примерно на порядок) предел детектирования. [c.248]


Смотреть страницы где упоминается термин Хроматографический пик детектирования: [c.181]    [c.76]    [c.273]    [c.302]    [c.38]    [c.98]    [c.125]    [c.103]    [c.113]   
Хроматография полимеров (1978) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Калмановский В. И. К вопросу об определении постоянной времени системы хроматографического детектирования



© 2025 chem21.info Реклама на сайте