Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография газовая фронтальная

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]


    Принцип хроматографического разделения веществ может осуществляться различными способами. Наибольшее распространение получил проявительный (элюентный) метод. Этот метод считается лучшим для аналитических целей, тогда как два других метода, фронтальный и вытеснительный, пригодны для очистки веществ и препаративного выделения газов. Проявительный метод впервые был использован Цветом (1903). В газовой хроматографии его применила впервые Кремер (1950). Метод заключается в следующем. Подвижная фаза с постоянной скоростью протекает через колонку. Для каждого анализа незначительное количество подлежащей разделению пробы вводится в подвижную фазу перед входом в колонку в виде небольшой пробки вещества. В колонке отдельные компоненты неодинаково долго удерживаются неподвижной фазой. Благодаря этому они продвигаются по колонке медленнее, чем подвижная фаза, и с различными скоростями. Поэтому первоначальная пробка постепенно расщепляется на несколько зон. За данное время компоненты проходят различные по высоте участки колонки (рис. 2). [c.15]

    Подготовка набивок для газовой хроматографии методом фронтального анализа. [c.56]

    Теория газовой хроматографии сформулирована в соответствии с теорией разбавленных растворов. Это связано с тем, что разработка теории велась в рамках проявительного метода, в котором анализируемые вещества значительно разбавляются газом-носителем. Однако в газовой хроматографии возможны случаи, например, в любом из вариантов фронтального метода, когда разбавле- [c.144]

    Фронтальный метод газовой хроматографии был нами рассмотрен в гл. I. Хроматография без газа-носителя [79] основана на том же принципе. Однако этот вариант фронтального метода имеет свои особенности. Кроме того, хроматография без газа-носителя может осуществляться и в проявительном варианте. [c.145]

    Вытеснительный способ отличается от фронтального и элюентного тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлено растворимое вещество (в жидкофазной хроматографии) или вещество в газообразном (парообразном) состоянии (в газовой хроматографии). Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбирующиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому М. С. Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты разделяются при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. [c.16]


    В 40-х годах хроматографию стали применять для разделения компонентов газовых смесей на адсорбентах сначала фронтальным методом (пропуская через адсорбент газовую смесь постоянного состава и получая так называемые выходные кривые), а затем и элюционным методом (вводя газовую смесь в колонну и промывая ее потоком газа-носителя, в результате чего по-разному [c.8]

    Хроматографические методы классифицируют по нескольким параметрам а) по механизму разделения компонентов анализируемой смеси (адсорбционная, распределительная, ионообменная, осадочная и др.) б) по агрегатному состоянию подвижной фазы (газовая, жидкостная) в) по типу стационарной фазы и ее геометрическому расположению (колоночная, тонкослойная, хроматография на бумаге) г) по способу перемещения разделяемой смеси в колонке (элюентная, фронтальная, вытеснительная). [c.107]

    Существуют проявительный, фронтальный и вытеснительный методы хроматографии, которые различаются между собой способом перемещения разделяемой смеси вдоль слоя сорбента. Последние два метода для целей газового анализа не получили широкого применения, и дальнейшее изложение относится только к проявитель-ному методу. [c.93]

    Фронтальный метод впервые был описан Тизелиусом (1940) для жидкостной хроматографии, а Джеймсом и Филлипсом (1953) был внедрен в газовую хроматографию. Проба непрерывно подается в колонку. После заполнения колонки сначала из нее выходит наименее прочно связанный с неподвижной фазой компонент данной смеси. При дальнейшем пропускании пробы из колонки выходит также второй компонент, ближайший к первому по своему сродству с неподвижной фазой, так что из колонки выходит двухкомпонентная смесь. Постепенно к ней присоединяются другие компоненты, пока, наконец, через колонку не будет протекать задаваемая смесь первоначального состава. Этот метод успешно используется для очистки больших количеств смесей от следов сильно адсорбируемых примесей. [c.17]

    Хроматографические методы можпо различать по условиям проведения разделения газовый и жидкостный по механизмам разделения молекулярно-адсорбционный, ионообменный, распределительный. Существенное значение имеет форма проведения процесса и способ неремещення смеси вдоль сорбента. Перемещение смеси можно осуществить в проявительном режиме, когда вещество-носитель практически не сорбируется. Этот метод обычно используется в газовой хроматографии. Перемещение смеси может быть во фронтальном режиме, нри котором происходит последовательное выделение сначала наименее сорбируемого компонента. Распространен и вытеснительный режим, при котором исходная [c.288]

    Если же нужно получить интегральную величину, то следует отдать предпочтение фронтальному анализу. Можно обойтись без дорогостоящего электронного интегратора и избежать таким образом возникающих при этом ошибок и корректировки, необходимой в случае нелинейного интегрирования. Высота ступеньки в отличие от высоты пика при проявительной хроматографии не зависит от температуры и свойств применяемой колонки, а также от скорости газа в случае применения детекторов, нечувствительных к скорости газового потока. [c.430]

    Пихлер и Шульц (1958) назвали этот метод непрерывным разделением в условиях проявительной газовой хроматографии . Нам представляется, что такое определение не отражает действительной картины, поскольку метод, как было показано, имеет гораздо больше общего с фронтальным анализом, чем с проявительным. [c.442]

    В книге подробно наряду с теорией и методикой проявительной газовой хроматографии обсуждаются также вопросы адсорбционного и абсорбционного равновесия и теория фронтальной газовой хроматографии. [c.478]

    Расширение области применения аналитической реакционной газовой хроматографии связано, в частности, с расширением круга исследуемых химических реакций, В работах [34] для фронтального химического концентрирования в газовой хроматографии была применена химическая абсорбция с целью определения углеродсодержащих летучих примесей в водороде. Для предварительного концентрирования примесей в водороде был использован метод фронтального хемосорбционного концентрирования на палладиевой черни, которая интенсивно хемосорбирует водород при комнатной температуре (один объем палладиевой черни поглощает до 200 объемов водорода). Поэтому при использовании данного [c.221]

    Профиль, показанный на рис. 17, был определен благодаря анализу, проводившемуся с помощью газовой хроматографии. Исследовалось содержание растворителя на полосках фольги, покрытых слоем силикагеля. Элюирование с таких тонкослойных пластинок проводили в ненасыщенных сэндвич-камерах без предварительного насыщения сухого слоя, если не считать нескольких миллиметров в области видимого фронта (такая область отчетливо обозначена на рисунке). При пользовании данными пластинками, изготовленными с употреблением фольги, не наблюдаются различия профилей градиента при элюировании в горизонтальной и вертикальной плоскостях. Когда элюирование проводили с двухчасовой передержкой, кривизна, обусловленная фронтальным градиентом, устранялась, слой сорбента оказывался равномерно насыщенным и отмечалось общее увеличение концентрации растворителя в слое на 6%. Последствием такой выдержки пластинки являлось то, что (если даже не учитывать повышенное насыщение всей поверхности) большее количество растворителя (в 1.8 раза) проникало в слой для сглаживания фронтального градиента (4й=1-08 см. уравнение 41а). [c.69]


    П.Фей е ш (Институт изотопов Венгерской академии наук, Будапешт). Нами совместно с проф. Г. Шаем была разработана новая теория фронтальной газовой хроматографии, которая объясняет обусловленное адсорбцией адсорбата изменение скорости потока газа в газо-хромато-графической колонке. Удалось показать, что в колонках длиной 20—50 см образуются стационарные фронты, которые продвигаются вдоль колонки без изменения своей формы. [c.458]

    Методы колоночной хроматографии, упомянутые в предыдущем разделе, можно классифицировать по применяемой в них комбинации подвижной и стационарной фаз. В табл. 1-1 дается сводка таких комбинаций, описанных в литературе. Метод вытеснения практически не может быть применен к системам жидкость — жидкость или газ — жидкость. Фронтальный анализ в случае системы газ — твердое тело также применим только к газовым пробам, так как, исходные смеси, которые приходится непрерывно испарять, неизбежно будут подвергаться одноступенчатой дистилляции с изменением состава. Этой проблемы не возникает при проявительном и вытеснительном методах, в которых применяется дискретная проба. Из трех рассматриваемых методов проявительный метод является наиболее гибким и универсальным в отношении комбинации применяемых фаз. [c.27]

    В настоящее время Дзержинский филиал ОКВА совместно с отделом газовой хроматографии Всесоюзного научно-исследовательского геологоразведочного нефтяного института разработал лабораторный газовый хроматограф Луч , основанный также на использовании фронтально-адсорбционного обогащения легких примесей в предварительно вакуумированной колонке [148]. [c.69]

    Однако, в дальнейшем работы, посвященные вытеснительной газовой хроматографии, не проводились в связи с недостатками этого метода, заключающимися в том,, что он, как и фронтальный анализ, может применяться лишь для вешеств, имеющих выпуклые изотермы адсорбции отсутствие промежутков между зонами отдельных компонентов приводит к некоторому их смешению введение вытеснителя в высокой концентрации усложняет ироведение анализа для каждого анализа необходимо применять новую порцию адсорбента. [c.15]

    Введение небольших дискретных проб является основной особенностью проявительной хроматографии, но оно не всегда необходимо в газовой хроматографии вообще. Например, при фронтальном анализе проба вводится в, колонку при постоянной скорости потока, который прекращают только после окончания опыта, перед тем как произвести продувку колонки для подготовки ее к следующему анализу. [c.120]

    В связи с необходимостью разработки аппаратуры для осуществления фронтальной газовой хроматографии была изучена роль газовой диффузии в условиях газовой хроматографии. [c.22]

    Исследование изменения концентрации вещества за слоем сорбента носит в хроматографии название — фронтального анализа . Для этой цели применяются как простые, так и довольно слон ные устройства, о которых мы скажем позднее. В опытах по динамике сорбции почти никогда ие приходится иметь дело с сорбцией одного вещества. В случае жидкостей всегда пр 1сутствует растворитель, в газовых системах — газ-иоситель, содержащий примеси. Например, обычный угольный противогаз, [c.49]

    Газо-адсорбционная хроматография начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. А. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбционный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве аза-носителя — двуокись углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Д. А. Вяхиревым (независимо друг от друга). Метод был назван объемнохроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.83]

    Все без исключения промышленные хроматографы основаны иа способе проявительной газовой хроматографии, при которой анализируемая проба вводится в слой сорбента в дискретные 1м0,менты времени, транспортируется вдоль слоя потоком чистого и инертного в данной системе газа. Разделенные компоненты пробы вы.мываются из слоя сорбента и детектируются тем или инылг газоаналпзаторо.м. Другие варианты газохроматографического метода — фронтальный анализ, вакаитная хроматография, теплодинамический метод и т. д.— ие получили распространения в производственной хроматографии из-за определенных трудностей их реализации в промышленных вариантах приборов. В связи с этим любой промышленный хроматограф включает в себя следующие функциональные узлы (рнс. 144) устройства регулирования и стабилизации потока газа-иосителя, устройство ввода в поток газа-носнтеля пробы анализируемой смеси, хро.матографическую колонку с соответствующими электронными блоками поддержания ее температурного режима, детектор, фиксирующий результаты разделения компонентов смеси и, наконец, командный прибор для автоматического управления работой хроматографа. Различия. между отдельными типами приборов могут состоять в их назначении, принципе действия, в схемных и конструктивных решениях, а следовательно, и в параметрах как отдельных функциональных узлов, так и приборов в целом. [c.317]

    В 1940—1942 гг. Тизелиусом и Клессоном были предложены фронтальный и вытеснительный методы хроматографии. Первая фронтально-вытеснительная хроматограмма паров толуола и этанола на колонке с углем получена Дубининым с сотр. Из ранних исследований по адсорбционному разделению в газовой фазе следует отметить работы Кремер, Шуфтана, Петерса, Гессе, Тернера и Дамкёлера, выполненные в 1933—1943 гг. [c.11]

    Из всех вариантов газовой хроматографии наибольшее распрост-ранекие получил проявительный метод разделения и анализа сложных смесей в насадочных хроматографических колоннах. Однако для решения некоторых специфических задач, таких как определение микропримесей, анализ очень сложных смесей, экспрессный анализ и в ряде других случаев целесообразным оказывается применение некоторых вариантов, более или менее существенно отличающихся от общепринятого метода. Эти варианты могут осуществляться в рамках как проявительного, так и фронтального анализа. Из них наибольшее значение получили капиллярная хроматография, различные модификации хроматографии без газа-носителя, хроматермография и др. Некоторые варианты, например хроматермография и теплодинамический метод, были рассмотрены нами ранее. [c.137]

    Вытеснительный способ отличается от фронтального и элюентного, тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлены растворимое вещество или вещество в газообразном (парообразном) состоянии (соответственно в жидкофазной и в газовой хроматографии). Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбиругощиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты полностью разделяются при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. К моменту полного насыщения адсорбента вытеснителем детектор запишет ступенчатую выходную кривую, отличающуюся от фронтальной кривой тем, что каждая ступень соответствует чистому компоненту. Высота ступени характеризует данный компонент с качественной стороны, а длина ступени пропорциональна количественному содержанию данного компонента в исследуемой смеси. Обязательным условием для хорошего разделения в противоположность элюентному способу является резко выраженная выпуклая форма изотерм адсорбции разделяемых компонентов и вытеснителя. А это условие выполнимо лишь в случае применения высокоактивных адсорбентов активированных углей березового ВАУ, каменноугольного антрацита АГ-2, норита и др. [c.17]

    В зависимости от природы применяемых сорбентов и разделяемых соединений в препаративной газовой хроматографии, как и в аналитической, применимы и газо-адсорбционный и газо-жидкост-ной (распределительный) варианты. Аналогичным образом применимы не только проявительный, т. е. элюентный, способ хроматографического разделения, но и фронтальный, вытеснительный, тепловытеснительный, хроматермографический, теплодинамический и др. (см. гл. I). Однако широкое применение пока получил лишь проявительный способ. [c.213]

    Сокращения Кол.— колоночная хроматография Тонк.— тонкослойная хроматография Бум,— хроматография на бумаге Кап. —капиллярная хроматография Пр.— проявительный метод Вт.—вытеснительный метод Фр.—фронтальный метод Тп.—газовая хроматография с программированием температуры Тд.—теплодинамический метод Эф.—электроферография Вк.—Вакантохроматография. [c.22]

    В весовых кол-вах Н. не получен, его св-ва исследовались с использованием десятков атомов. Первые сведения о хим. св-вах Н. получены в 1967 в СССР. Методом фронтальной газовой хроматографии было показано, что Н. образует нелетучий хлорид, в хроматографич. колонке ведет себя подобно лантаноидам. m и, следовательно, является представителем актиноидов. В кислых р-рах в отсутствие окислителей Н. существует в виде иона No , к-рый соосаждается с BaS04, но остается в р-ре при образовании осадка ЬаРз. При экстракции с использованием триоктиламина и ди(2-этилгексил)фосфорной к-ты, ионном обмене и экстракц. хроматографии Н. ведет себя подобно Ве , Mg , Са , Сг , Ва и Ra и м.б. легко отделен от лантаноидов и актиноидов, имеющих степень окисления + 3. Действием перйодат-, пероксидисульфат- и бромат-ионов No м.б. окислен до No . Стандартный электродный потенциал для No(n)/No(ni) от - 1,4 до - 1,5 В. [c.287]

    Сущность и классификапия методов хроматографии. Элюаци-онная (проявительная), фронтальная, вытеснительная, электрохроматография молекулярная, ионная, надмолекулярная адсорбционная, распределительная, ионообменная, осадочная, аффинная, эксклюзионная газовая и жидкостная хроматографии аналитическая, неаналитическая, препаративная и промышленная. [c.145]

    Так как в настоящей книге рассматривается только аналитическая газовая хроматография, мы не обсуждаем далее ни проблемы фронтального анализа или вытеснительной хроматографии, ни проблемы препаративной хроматографии. [c.16]

    Проявительная хроматография, вообще говоря, является наиболее гибким методом эффективного разделения смесей, фронтальный анализ и различные вытеснительные методы в настоящее время применяются меньше. Следует привести несколько определений хроматографии, охватывающих в целом сущность и область применения этого метода. Вильямс [51 ] дает краткий обзор ранних работ в этой области и общее определение, включающее в себя различные методы хроматографии Под хроматографией понимаются процессы, позволяющие определять состав путем выделения всех или нескольких компонентов в концентрационные зоны или отличные от тех, в которых они первоначально присутствовали, независимо от природы силы или сил, вызывающих перемещение вещества . Более ограниченное определение предложено Кейлемансом [31 ] Хроматография есть физический метод разделения, в процессе которого разделяемые компоненты распределяются между двумя фазами, причем одна из этих фаз представляет собой стационарный слой с большой поверхностью, а другая фаза — жидкость, проходящую через стационарный слой или вдоль него . Газовая хроматография охватывается этими определениями, но она отличается от более старых методов хроматографии тем, что одной из фаз в данном случае является газ, который переносит различные вещества через неподвилшый слой сорбента. [c.26]

    Фронтальный анализ в газовой хроматографии реализуется при непрерывном пропускании через колонку смеси исследуемых компонентов в потоке газа-носителя с соблюдением постоянства концентрации. Область, занятая более легко адсорбирующимися компонентами, постепенно распространяется вдоль колонки до тех пор, пока адсорбционная емкость адсорбента не окажется исчерпанно . Компоненты, труднее адсорбирующиеся, не задерживаясь на адсорбенте, выходят из колонки в смеси друг с другом в порядке возрастания адсорбируемости, за исключением первого (наименее адсорбируемого) компонента, выходящего в чистом виде. [c.158]

    На рис. II.2,е показано расноло кение хроматографических полос при так называемом фронтальном анализе, основы которого для жидкостной хроматографии были заложены Тизелиусом и Классоном [20], а для газовой — экспериментальными исследованиями Дубинина с сотрудниками по динамике адсорбции смесей газов и паров [34, 35] и известной теоретической работой Тодеса [36]. В этом случае смесь веществ (например, А и Б) непрерывно пропускают через хроматографическую колонку. После того как поглотительная способность неподвижной фазы колонки исчерпается, из нее сначала выходит наименее поглощающийся компонент А, а некоторое время спустя и лучше сорбирующийся компонент Б в смеси с [c.83]

    Число опубликованных к настоящему времени работ по использованию газовой хроматографии при изучении хемосорбции сравнительно невелико. Кремер и Розелиус [59, 60] впервые исследовали влияние отравления платинового катализатора сероводородом на время удерживания водорода колонкой, заполненной катализатором. Для определения удельной поверхности платины в гидрирующих катализаторах применялся метод предварительного окисления с последующим восстановлением металлической поверхности дозированным количеством На [61]. Для измерения изобар водорода на никелевых катализаторах был использован фронтальный метод [62]. Пример использования импульсной хроматографической методики при измерении хемосорбции водорода и СО на катализаторе Р1 (0,5%) на 7-А120з приведен в работах [19, 63]. На рис. 111.25 представлена серия хроматограмм, полученная в результате ввода девяти последовательных доз (по 0,6 см НТД) водорода в каталитическую колонку, заполненную 8 г указанного катализатора. Размеры колонки 90 X 0,4 см, скорость потока газа-носителя 5 см /мин. Температура реактора 50° С. Суммарное количество поглощенного Нд — около 2 сл , причем это количество не зависит от объема отдельных доз. Поглощенный водород хемосорбирован прочно и практически не десорбируется при многочасовой продувке аргоном. Десорбция поглощенного На не происходит и при нагреве д 400° С — предварительно насыщенный водородом катализатор не приобретает способности поглощать водород при длительном его нагреве в токе аргона. [c.135]


Смотреть страницы где упоминается термин Хроматография газовая фронтальная: [c.155]    [c.92]    [c.22]    [c.431]    [c.45]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая

Хроматография фронтальная



© 2025 chem21.info Реклама на сайте