Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

замещением хлоридом пода

    Есть еще одна возможность приблизить отношение скоростей замещения первичного и вторичного атомов водорода к единице. Она заключается в проведении газофазного хлорирования под давлением, так как повышение последнего благоприятствует замещению водорода метильных групп. В то время как при 300° и нормальном давлении скорости замещения хлором первичного и вторичного атомов водорода пропана относятся как 1 3,25, повышение давления до 70 ат увеличивает это отношение до 1 2,6 [41]. При 240° и нормальном давлении указанные скорости замещения относятся как 1 3,6 если давление повысить до 240 ат, отношение скоростей увеличивается до 1 2,65. Такое повышение давления увеличивает содержание первичного хлорида в продуктах реакции от 45 до 54%. Аналогичный результат получается, если при нормальном давлении температуру повысить от 240 до 475°. [c.547]


    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]

    Обратная реакция — превращение гидроксипроизводных в аминопроизводные — широко используется в нафталиновом ряду преи мущественно для получения производных р-ряда, которые трудно синтезировать иным методом. Особенно важна при этом реакция Бухерера, которая будет рассмотрена несколько позже. В отдельных случаях для этого может быть использован и кислотно-ката-лизируемый процесс нуклеофильного замещения гидроксильной группы. Обычно для его осуществления соответствующие гидрокси-соединения нагревают с водным аммиаком и катализаторами (хлорид цинка, хлорид кальция и хлорид аммония) под давлением при 200 250 "С. [c.206]

    Аналогично замещенные в ядре 2-амнно-1-фенилпропаны могут быть получены взаимодействием соответствующих хлоридов со спиртовым раствором аммиака под. давлением [408]. В качестве примера синтеза с аммиаком выбран синтез фенамин (бензедрина). [c.414]

    Возможно также провести прямое замещение, дающее изоцианат. В 1958 г. была запатентована реакция бензилхлорида с цианатом натрия в присутствии различных растворителей в ДМФА или в отсутствие растворителей, катализируемая тетра-этиламмонийиодидом. Она протекает очень быстро при 170 °С [90]. Этот же катализатор использовали для получения силиль-ных соединений в ДМФА (145 °С, 30 мин, выход 89%) [91]. Этот факт указывает на возможность замещения хлорид-иона в исходном соединении в качестве первой стадии реакции под действием аммопийиодида. Такое предположение подтверждается тем, что KI также катализирует эту реакцию, хотя и менее эффективно 91]. [c.141]

    Силыюэкзотермичное присоединение хлора к бензолу, не подвергнутому специальной очистке, не требует подвода тепла и проводится чаще всего при УФ-облучении в этом случае реакцию мо кно выполнять в присутствии водного раствора щелочи Катализаторы, такие, как железо, хлориды железа, сурьмы лли иод, благоприятствуют элоктрофилыгому замещению, которое под действием имеющихся в техническом бензоле нг> шачителышх примесей протекает в качестве побочной реакции также при проведении реакции присоединения. [c.105]


    Эти амиловые спирты, выпускаемые под фирменным названием пентазолы , содержат около 60% первичных и до 40% вторичных спиртов. Содержание первичных спиртов весьма ценно, так как именно они в виде ацетатов представляют исключительно важный растворитель для лакокрасочной промышленности их сложные эфиры винокаменной или фталевой кислоты являются важными мягчителями или (пластификаторами. Если бы гидролиз всех хлоридов амила протекал одинаково, то содержание первичного спирта должно было составлять лишь около-33%. Однако вследствие того, что первичные хлориды практически полностью превращаются в соответствующие спирты, в то время как вторичные и особенно третичные хлориды превращаются главным образом в олефины и, таким образом, в образовании спирта почти не участвуют, содержание первичных спиртов в гидролизате неизбежно увеличивается. Это совершенно ясно из всего сказанного выше. В олефины превращается около 50% не первично замещенных хлористых амилов, что соответствует приблизительно /з общего количества хлоридов. [c.220]

    Он сделал предположение, что в ходе реакции образуются следовые количества Ы,Н,Н, Н -тетраметилпиперазинийдихлори-да, который действует как катализатор [224]. Впоследствии он показал, что под действием водного раствора гидроксида натрия и ТЭБА из бензилхлорида и циклогексанола образуется смесь простых эфиров. Однако работа Жаррусса не привлекла внимания химиков. Точно так же и ранние работы по МФК-алки-лированию фенола и бензилового спирта замещенными аллилхлоридами в присутствии системы КОН/четвертичные аммониевые хлориды остались погребенными в литературе [211, 225, 226]. Примерно в то же самое время в патентной литературе были описаны некоторые реакции, которые в широком понимании можно считать МФК-яроцессами, например получение эпоксидных смол из дифенол ОБ [186, 228] или из циануровой кислоты [186] и эпихлоргидрина в присутствии щелочей и аммониевых солей. [c.148]

    Пероксигруппу можно ввести в некоторые органические молекулы при обработке их гидропероксидом в присутствии хлорида меди(1) или других катализаторов, например солей кобальта и марганца [198] выходы обычно очень высокие. Как и в реакциях с N-бромосукцинимидом (см., например, реакцию 14-2), замещению подвергается главным образом бензильный, аллильный и третичный водород. Реакция идет по механизму свободнорадикального типа с участием радикала ROO, образующегося из ROOH под действием иона металла. [c.89]

    Хлор, бром н яод в неполярных растворителях реагируют очен1. медленно. Под действием сильнополяриого растворителя или так называемого переносчика галогенов (кнслот Льюиса, напрнмер хлорида алюминия, хлорида железа(П1), а также металлического железа) молекула галогена поляризуется и приобретает в результате свойства кнслоты Льюиса (ср. разд. Г, 4.1.2). Таким образом электрофильное замещение значительно облегчается  [c.410]

    При замещении гидроксила во вторичных спиртах на галоген с помощью тионилхлорида или хлорокиси фосфора в присутствии основания наблюдаегся обращерше конфигурации. В этом случае имеет место обычное бимолекулярное нуклеофильное замещение 0-8(0)-С1 грушп>1 в хлорсульфите под действием хлорид-нона как нуклеофильного агента. Источником хлорид-иоиа служит гидрохлорид третичного амина, образующийся нри взаимодействии спирта, тионилхлорида и третичного амина  [c.870]

    Замещение одной ацетоксигруппы в молекуле сполна ацетилированного моносахарида иа хлор под действием хлорида алюминия в четыреххлористом углероде называют реакцией ЗЕМПЛЕНА — КОРИТНИКА  [c.210]

    Менее близко к литийорганическим соединениям стоят соли некоторых тяжелых металлов, которые также нашли применение в качестве металлирующих агентов. Среди них наиболее известны соли двухвалентной ртути [132] реакции замещения под действием этих солей исследовались еще в начальный период развития органической химии. Было найдено, что хлориды золота [133], теллура [134], таллия [135] и германия [136] также металлируют некоторые ароматические ядра. Наличие в этих металлирующих агентах сильной кислоты Льюиса и отсутствие в них сильно основного аниона заставляет предполагать, что механизм их действия отличается от мехайизма действия металлоорганических соединений Только в случае меркурирования (137 мёхйнйзм замещения водорода на атом тяжелого металла был исследовай достаточно подробно. [c.357]

    Электрофильное замещение фурфурола идет легче, чем для бензальдегида, и в отсутствие хлорида алюминия электрофил вступает в положение 5. В большинстве реакций конденсацни фурфурол ведет себя как ароматический альдегид. Водные растворы кислот, как правило, вызывают полимеризацию фурфурола, а. многие окислители — расщепление цикла [1]. Аутоокисление приводит к смолообразным продуктам [184]. При действии первичных арил-амннов в кислой среде происходит раскрытие кольца и образуется соль (213), которая под влиянием кислоты циклизуется в пириди-ниевую соль (215), а при действии основания — в замещенный цик-лопентенон (214) (схема 79). Циклопентеноны могут быть получены непосредственно при взаимодействии фуранкарбальдегидов-2 с ариламрщами в отсутствие кислоты [185]. [c.163]


    Тетрагидро-1,3-оксазины получают взаимодействием первичных или вторичных 7-аминоспиртов с альдегидами или эквивалентными реагентами (ацетилен под давлением или простые виниловые эфиры с диацетатом ртути в качестве катализатора). В случае первичных аминов в продукте реакции может присутствовать ациклическое основание Шиффа. Кетоны обычно дают с 7-амино-спиртами основания Шиффа, но в некоторых случаях, например с циклогексаноном, образуются 1,3-оксазины. Конденсация 1,1-ди-замещенных олефинов с формальдегидом и хлоридом аммония или гидрохлоридом первичного амина приводит к тетрагидро-1,3-окс-азинам (39) (схема 12) в случае монозамещенных олефинов двойная связь должна быть активирована арильной группой или сопряженной двойной связью. Метанолиз тетрагидро-1,3-оксазн-нов действием метанола и хлороводородной кислоты сопровождается удалением С-2 в виде метилаля и представляет собой путь получения 7-аминоспиртов [18]. Первичные нитроалканы при взаимодействии с формальдегидом и аминами дают тетрагидро-5-нитро- [c.570]

    Особую группу реакций электрофильного ароматического замещения составляют реакции, приводящие к получению ароматических альдегидов. Сюда входят самые разнообразные методы введения формильной группы в ароматическое кольцо. Некоторые из них сохраняют свое значение до настоящего времени, другие представляют лшиь исторический интерес. Прямое введение формильной группы в бензольное кольцо впервые удалось осуществить Л. Гаттерману и Г. Коху в 1897 г. Формилирование по Гатгерману—Коху осуществляется под действием оксида углерода (П) и хлористого водорода в присутствии типичного катализатора Фриделя—Крафтса — хлорида алюминия, промотирован-ного хлоридом меди (I)  [c.480]

    Галогенирование ди-грет-алкилперекисей в жидкой фазе, преимущественно радиационное и в присутствии катализаторов (бромидов и хлоридов меди, пятихлористого фосфора или моно-хлористой серы) приводит к замещению водорода галогеном. Так, ди-трег-бутилперекись под действием хлора при 30—40° С превращается с выходом 42—43% в монохлорперекись, аналогичную полученной при взаимодействии хлор-грег-бутилгидро-перекиси с грег-бутаиолом дальнейшее ее хлорирование приводит к смеси дихлорперекисей Если хлорирование проводится в присутствии двуокиси серы, при ультрафиолетовом освещении и О—20° С, то перекиси превращаются в сульфохло- [c.268]

    Если ацилирующими агентами являются хлорангидриды замещенных кислот, то природу Ы-ацильных производных фентиазина, очевидно, определяет природа растворителя [3531. С хлорангидридом фенилуксусной кислоты или с хлорацетилхлоридом в бензольном или диоксановом растворе получаются замещенные Ы-ацетильные производные. В кипящей ледяной уксусной кислоте любой хлорид дает М-ацетилфентиазин. Предполагается, что при взаимодействии хлорангидридов кислот с растворителем образуются смешанные ангидриды КСНаОСООСНз (К=С1 или СвНз). Последние затем под влиянием выделяющегося хлористого водорода разлагаются с образованием хлористого ацетила. Ароилхлориды, однако, ацилируют фентиазин в уксусной кислоте нормально. [c.573]


Смотреть страницы где упоминается термин замещением хлоридом пода: [c.203]    [c.9]    [c.9]    [c.11]    [c.11]    [c.12]    [c.46]    [c.46]    [c.85]    [c.102]    [c.9]    [c.9]    [c.11]    [c.12]    [c.46]    [c.46]    [c.102]    [c.75]    [c.80]    [c.83]    [c.370]    [c.395]    [c.370]    [c.133]    [c.398]    [c.479]    [c.668]    [c.174]    [c.168]    [c.170]    [c.182]    [c.182]   
Методы эксперимента в органической химии (1968) -- [ c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте