Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие кристаллическая фаза газ

    Термодинамические данные для равновесия кристаллическая фаза—жидкость [c.140]

    Величина коэффициента самодиффузии зависит от условий равновесия кристаллической фазы с внешней средой, с которой она обменивается атомами, т. е. >, =/ (активности). [c.380]

    Условием устойчивого термодинамического равновесия кристаллической фазы и адсорбата являются равенства Рз = Рт и йР йТ — йР /йТ. С учетом соотношений (1) и (2) из выражения (6) получаем [c.206]

    Кривая АЕ соответствует равновесию кристаллической фазы чистого компонента А с гомогенной жидкой фазой смеси обоих компо- нентов кривая ВЕ соответствует равновесию [c.844]


    Рассмотренные выше закономерности, относящиеся к растворимости твердых веществ в жидкости и понижению точки затвердевания растворов, имеют место в том случае, когда из раствора выделяются чистые твердые компоненты. Между тем нередко при охлаждении раствора выделяются твердые растворы—однородные кристаллические фазы переменного состава, состоящие из двух или нескольких компонентов. В этом случае давление пара компонента над твердым раствором (кривая Ьс на рис. VII, 5) меньше, чем над чистой твердой фазой (кривая ВС), и равновесие жидкого и твердого раствора осуществляется не при температуре Т , которой отвечает точка С, а при более высокой температуре Т , определяемой точкой с пересечения кривой D (давление пара над жидким раствором) с кривой Ьс. При этом температура может быть ниже Го—температуры затвердевания чистого растворителя (рис. VII, 5а) или выше ее (рис. VII, 56). [c.237]

    При изучении равновесия между жидкими и твердыми растворами охлаждение расплавов ведется до появления первых небольших количеств кристаллической фазы. Зная состав ряда жидких растворов и равновесных с ними первых порций выделившихся кристаллов, можно построить линии ликвидуса и солидуса. [c.405]

    В структуре стекла существуют аморфная и кристаллическая фазы, находящиеся в состоянии неустойчивого равновесия. Вследствие весьма высокой вязкости стеклянного расплава скорость кристаллизации его мала и равновесие почти полностью сдвинуто в сторону аморфной фазы, то есть стекло имеет преимущественно аморфную структуру. Поэтому стеклам присущи специфические свойства, характерные для аморфных тел  [c.315]

    При приближении к критическому состоянию термодинамические свойства сосуществующих в равновесии фаз (плотность, теплоемкость и др.) изменяются постепенно, без скачка. Именно поэтому критическое состояние наблюдается лишь при равновесии изотропных фаз (аморфных, жидких и/или газообразных) или кристаллических фаз с одним типом решетки. [c.170]

    В четверной диаграмме возникают более сложные пространственные построения — объемы кристаллизации первичной кристаллической фазы. В пределах объемов кристаллизации в равновесии с расплавом находятся отдельные компоненты нли соединения. Граничные поверхности смежных объемов кристаллизации соответствуют поверхностям кристаллизации, по которым выделяются две кристаллические фазы в присутствии жидкости. Пересечение поверхностей кристаллизации дает пограничные кривые, равновесные для трех кристаллических фаз и жидкости. Пограничные кривые пересекаются в нонвариантных точках системы, отвечающих равновесиям четырех кристаллических и жидкой фаз. [c.90]


    Жидкость, которая находится в равновесии с двумя кристаллическими фазами одновременно, называется эвтектической, ее состав — эвтектическим составом, температура, при которой существует такое равновесие, — эвтектической температурой. [c.157]

    Сравните ваши результаты с рис. 9.21 (см. с. 178). Кривая охлаждения, изображенная на этом рисунке, состоит из отдельных участков. На участке 1/ происходит охлаждение жидкого расплава, на 1к существует равновесие жидкости с кристаллами компонента А, на ке — равновесие жидкости с кристаллами компонентов А и В. Горизонтальный участок ез характеризует равновесие жидкости эвтектического состава с тремя кристаллическими фазами. Участок 52 отвечает понижению температуры ниже эвтектической, когда происходит охлаждение кристаллов А, В и С. Подсчет по правилу фаз позволяет установить, что Сусл=0 лишь на участке ез при кристаллизации всех трех компонентов одновременно. Этот процесс протекает при постоянной температуре. [c.175]

    На кривой равновесия жидкость — пар ОС имеется еще одна замечательная точка. Это точка С, в которой кривая ОС прекращается при более высоких температуре и давлении эта линия не существует. Дело заключается в том, что вдоль линии ОС с ростом температуры плотность жидкости уменьшается (тепловое расширение), а плотность насыщенного пара возрастает вследствие очень быстрого роста его давления. Таким образом, все свойства обеих сосуществующих фаз сближаются, и при температуре, при которой эти фазы перестают различаться (обе фазы аморфны, они имеют одинаковую плотность, поверхность раздела между ними исчезает), теплота перехода падает до нуля. Эта точка называется критической (Д. И. Менделеев, первым предсказавший это явление, называл критическую точку точкой абсолютного кипения). Для каждого вещества критическая точка характеризуется своими значениями критической температуры, критического давления и критического молярного объема. Для воды эти значения таковы Т р = 647,31 К, р р = = 2,212 10 Па, V ,,= 56 см /моль. Выше критической температуры существует только одна аморфная фаза. Лучше всего называть ее не газом и не жидкостью, а флюидной фазой. Однако кристаллические фазы (например, лед) выше этой температуры, конечно, могут существовать, и поэтому линия равновесия твердая фаза — аморфная фаза (флюид) простирается выше (линия ОВ на рисунке). [c.112]

    Рассмотрим процесс охлаждения расплава, заданного на диаграмме фигуративной точкой М (состав 45 % А н 55 % В). При медленном о.хлаждении расплава кристаллизация начинается при температуре, отвечающей фигуративной точке 3 на линии ликвидуса кристаллизуется твердый раствор, состав которого определяется точкой 4 на линии солидуса (твердый раствор по сравнению с жидким обогащен высокоплавким компонентом А, 93 %). Оставшийся расплав обогащается низкоплавким компонентом В, что соответствует перемещению точки 3 по линии ликвидуса вправо в положение 3. Выделяющаяся новая порция твердого раствора (точка 4 ) по сравнению с жидкой снова обогащается компонентом А, но по сравнению с предыдущей порцией твердого раствора она менее богата компонентом А (сравните составы твердых растворов в точках 4 и 4 ). Таким образом, состав твердого раствора в процессе кристаллизации меняется по линии солидуса тоже вправо (показано стрелками на диаграмме). Если диффузия в кристаллах настолько значительна, что при каждой температуре вся кристаллическая фаза приходит в равновесие с расплавом нового состава, то в какой-то момент состав твердого раствора сравняется с составом исходного расплава (при температуре ( — точка 4") и кристаллизация закончится. При дальнейшем понижении температуры будет происходить охлаждение твердого раствора, что будет соответствовать перемещению фигуративной точки в положение А/. [c.90]

    Давление. Влияние давления определяется знаком (направление смещения равновесия) и величиной (степень смещения равновесия) изменения объема в процессе. Так, сжатие повышает температуры плавления, кипения и сублимации для этих фазовых превращений АУ > 0. В соответствии с тем, что АУ , < АУ е < А суб., Т возрастает с давлением очень мало, весьма существенно, а еще значительнее (см. рис. 11.27 и с. 128). Ясно также, что для температур плавления таких веществ, как лед, сурьма и висмут, для которых плотность кристаллической фазы меньше плотности жидкости, т. е. [c.133]

    Индекс г здесь и далее обозначает насыщенный пар, т. е. находящийся в равновесии с жидкой (или кристаллической) фазой. [c.184]

    Значения таких термодинамических параметров жидкости, как энтропия, превышают соответствующие значения для находящейся с ней в равновесии кристаллической фазы. При этом разность указанных величин убывает с уменьшением температуры. Существует такая характерная температура (причем Т . < при которой эта разность становится равной нулю. Конкретные оценки, выполненные А. Миллером по известным экспериментальным данным для различных стеклуюпщхся низкомолекулярных жидкостей и полимеров, показали, что избыточная энтропия Д5 исчезает при температуре близкой к величине Твходящей в формулу (2.14) для температурной зависимости вязкости. Интересным исключением является полистирол, для которого Го = 323 К, а Tj = 281( 15)К. Это связано с предположением о том, что при Г о должна исчезать не полная избыточная энтропия Д5, а лишь ее конформационная составляющая s,S < Д 5, связанная с изомерными переходами при вращении групп, образующих полимерную цепь относительно связей в этой цепи. Для полиэтилена и полипропилена различие между и b.S пренебрежимо мало, но в полистироле вращение массивной фенильной группы относительно собственной оси дает существенный вклад в теплоемкость и, следовательно, в Д5, но не в Д -Поэтому для полимеров с массивными боковыми группами в цепи Вязкость должна становиться бесконечно большой, когда исчезает конформационная составляющая избыточной энтропии b.S — О, т. е. при Г = Го, однако из сказанного выше следует, что отсутствие сегментальных движений в цепи макромолекулы может быть не связано с требованием Д5 = О, которое удовлетворяется при более низкой температуре Га. [c.128]


    Новую интерпретацию этой важной частной системы дал Атлас (L. Atlas [288], 60, 1952, 140 и ниже). Она характеризуется предположением о совместном существовании различных фаз кристаллических растворов, включая типы протоэнстатита и ромбического энстатита. Равновесие кристаллических фаз можно исследовать только с помощью мощных минерализаторов вроде LiF. [c.436]

    К20= 2. Этот максимум находится в согласии с теоремой, впервые установленной Гиббсом на изотерме Р — Х максимум давления наблюдается в точке, в которой фигуративные точки реагирующих компонентов лежат на соединительной линии. Отношение ЗЮг КгО отвечает определенному соединению, дисиликату калия, находящемуся в равновесии с водяным паром. За этим максимумом давление вновь понижается к инвариантной точке, в которой находятся в равновесии кристаллические фазы дисиликат калия и KHSijOs. От этой точки с минимумом упругости пара кривая быстро поднимается к другому максимуму (не изображенному на диаграмме), в которой Р = 21 г воды. Этот максимум, согласно теореме Гиббса, отвечает определенному соединению КН31г05. Затем, по мере небольшого увеличения содержания кремнекислоты, давление несколько слабеет и в области стабильной кристаллизации кварца очень круто поднимается до исключительно высоких давлений в [c.619]

    Кривая АЕ соответствует равновесию кристаллической фазы чистого компонента А с гомогенной жидкой фазой смеси обоих компонентов кривая ВЕ соответствует равновесию стояния двухкомпонентной компонента В с той же смесью. При составе системы, не образующей смеси, соответствующей эвтектической точке , химического соединения. обе твердые фазы находятся в равновесии [c.844]

    Точка с, отвечающая температуре и составу раствора, который может находиться в равновесии с двумя кристаллическими фазами, называется перитектической. Она отличается от эвтектической тем, что оба вида кристаллов, равновесных с расплавом, обогащены одним и тем же компонентом по сравнению с этим расплавом (в данном случае компонентом aSiOg), тогда как в эвтектической точке расплав находится в равновесии с двумя кристаллическими фазами, одна из которых обогащена по сравнению с расплавом первым компонентом, а другая—вторым компонентом. [c.387]

    Рассмотрим процесс охлаждения системы, отвечающей фигуративной точке S. Состав расплава не меняется, пока фигуративная точка всей системы не достигнет в процессе охлаждения точки S. Эта точка лежит на поверхности Агор, отвечающей равновесию жидких фаз различного состава с твердой фазой А. В момент достижения точки S система еще однофазна. При дальнейшем охлаждении система распадается на две фазы—кристаллический компонент А, фигуративная точка которого опускается от точки а к вершине А треугольного основания, и остаточный расплав, фигуративная точка которого перемещается по кривой S S", лежащей на поверхности Агор. Расплав при этом обедняется компонентом А, поэтому расстояние фигуративной точки до ребра А А непрерывно возрастает. Расплав, отвечающий фигуративной [c.424]

    Если рассматривать в качестве гипотетической исходной модели твердого тела идеальный кристалл, находящийся при температуре абсолютного нуля, то все образующие его частицы будут занимать вполне определенные места, образуя правильную кристаллическую решетку. При повышении температуры, в результате теплового движения частиц, этот порядок нарушается. Часть частиц может покинуть свои места в узлах решетки (образуются вакантные узлы) и занять положение в междууз-лиях ( дефекты по Френкелю ). В некоторых случаях частица может покинуть положение в междуузлии и выйти на поверхность в этом случае в решетке образуются только вакантные места ( дефекты по Шоттки ). При данной температуре Г число п дефектов данного вида, находящихся в термодинамическом равновесии с кристаллической фазой, будет определяться выражением [c.339]

    Примером энангиотропного превращения может служить переход ромбической серы в моноклиническую и обратно. Если ромбическую серу Зр нагревать, то выше 95,4 С она будет превращаться в моноклиническую серу при 95,4° С обе формы находятся в равновесии. Сера может находиться в четырех фазах парооб-Рис. 30. Диаграмма состояния серы разной, ЖИДКОЙ И ДВух кристаллических, условия существования которых приведены на диаграмме состояния серы, изображенной на рис. 30. На диаграмме имеются четыре области 5р, 5 , 5 и отвечающие устойчивому существованию четырех фаз серы. На диаграмме имеются четыре тройные точки. В точке А при 95,4 С ромбическая сера 5р превращается в моноклиническую серу 3 . Эта точка отвечает безвариантному равновесию трех фаз двух твердых (Зр и 3 ,) и одной газообразной и называется точкой превращения. В точке С при 120 С моноклиническая сера плавится здесь осуществляется без-вариантное равновесие трех фаз серы жидкой, твердой 3 , и парообразной. В точке В в равновесии с жидкой серой 3 находятся две ее кристаллические модификадии. В точке О сосуществуют перегретая ромбическая сера (кривая ОВ), переохлажденная жидкая сера (кривая ОС) и пар (кривая АО), давление которого выше давления пара, равновесного с моноклинической серой (кривая АС). Такой пар будет пересыщенным относительно пара, равновесного с 3 . В точке О три неустойчивые фазы образуют метастабильпую, малоустойчивую систему. [c.180]

    Точка с, отвечающая равновесию между жидким расплавом и двумя кристаллическими фазами, называется перитектической. Она отличается от эвтектической точки тем, что обе кристаллические фазы обогащены относительно жидкости одним и тем же веш,е-ством (в точке эвтектики каждая кристаллическая фаза обогащена относительно жидкого расплава либо одним компонентом, либо другим). [c.109]

    На сторону АВ проектируются уже не две двойные эвтектики, а одна эвтектика и перитектика и. В системе образуется только одна тройная эвтектика Е. Точка О не является эвтектической, так как температуры по линии СЕ падают по направлению к Е (температурный максимум расположен в точке пересечения соединительной прямой АтВп—С и продолжения линии СЕ), и в точке С сходятся лишь две стрелки. Но поскольку в точке О находятся в равновесии с жидкостью три кристаллические фазы, поля кристаллизации которых примыкают к ней, т. е. фазы А, С и АтВп, то эта точка, так же как и Е, будет инвариантной. Она носит название точки двойного подъема (если в эту точку на поверхности ликвидуса поставить наблюдателя, то он увидит две поднимающиеся и одну опу скающуюся пограничные кривые). Как и эвтектика, точка двойно го подъема относится к так называемым тройным точкам системы, где в равновесии сосуществуют три твердые фазы. [c.78]

    Если заданный состав выражается точкой Ь, то в этом случае первичной кристаллической фазой будут кристаллы Б. Путь кристаллизации по продолжению линии ВЬ попадает в точку двойного подъема С. В этой точке кристаллы В находятся в равновесии с соединением АтВпСр и незначительным количеством кристаллов А в присутствии остаточной жидкой фазы. Кристаллы А практически сразу расходуются на реакцию образования химического соединения АтБпСр. Далее путь кристаллизации проследует по пограничной кривой СЕг в точку Е2. Конечными твердыми фазами будут В, АтВпСр и С. [c.87]

    Однокомпонентные диаграммы состояния. Сублимация, плавление и испарение. Примером однокомпонентной системы может служить любое простое вещество, а также химическое соединение, обладающее строго определенным составом во всех трех агрегатных состояниях, которые могут находиться в равновесии друг с другом попарно либо все вместе в зависимости от параметров состояния. Полагая наличие только одной кристаллической фазы, можно представить существование трех двухфазных и одного трехфазного равновесия для однокомпонентной системы. Обозначив твердое, жидкое и газообразное состояния соответственно S, L и V, можем указанные равновесия записать в следующей форме  [c.264]

    Задание. Продумайте, как происходит кристаллизация смеси, соответствующей этой диаграмме, перерисуйте диаграмму в тетрадь и постройте кривую охлаждения смеси /. Учтите, что вид отдельных участков кривой охлаждения должен соответствовать вариантности системы. При достижении перитектической температуры существует равновесие трех фаз — жидкости и двух кристаллических, следовательно, y = 2—3 + 1=0. [c.163]

Рис. 65. Диаграмма состояния однокомпоыентной системы К — поле кристаллического состояния вещества Ж — поле жидкого состояния веществ Г—поле газового состояния вещества (пар) О — тройная точка (равновесие трех фаз) ВО — кривая зависимости температуры плавления от давления ЛО —кривая давление пара над жидкостью (зависимость от температуры) ВО — кривая давления пара над кристаллом Рис. 65. <a href="/info/2482">Диаграмма состояния</a> однокомпоыентной системы К — <a href="/info/1597104">поле кристаллического состояния</a> вещества Ж — <a href="/info/501935">поле жидкого состояния</a> веществ Г—поле <a href="/info/1787009">газового состояния вещества</a> (пар) О — <a href="/info/3550">тройная точка</a> (равновесие трех фаз) ВО — <a href="/info/10366">кривая зависимости температуры</a> плавления от давления ЛО —<a href="/info/1025477">кривая давление пара</a> над жидкостью (зависимость от температуры) ВО — <a href="/info/1025477">кривая давления пара</a> над кристаллом
    В выражение константы равновесия гетерогенной реакции концентрации кристаллических фаз не входят (если не образуются твердые растворы). Это объясняется тем, что какое бы количество (очень много, очень мало) крист.чллической фазы ни 11Лходи.юсь I) равновесной системе, комцсчгграция ее (выри женная в моль/л) всегда одна и та же. [c.232]

    Как Правило, ДЯфп., V, V", и 3" относят к 1 моль или к единице веса (1 г или 1 кг). Указанные величины соответственно отвечают 1) для кипения — изменению давления насыщенного пара с температурой (кривизне линии равновесия жидкость — пар), теплоте парообразования и увеличению объема и энтропни при парообразовании 2) для плавления — изменению температуры плавления с давлением (<3//<3я)равн, теплоте плавления и изменению объема и энтропии при плавлении 3) для сублимации — зависимости Р от I на кривой равновесия кристаллическое тело — пар, теплоте сублимации и увеличению объема и энтропии при сублимации 4) для превращения одной кристаллической модификации в другую — взаимосвязи Р и при равновесии этих фаз, теплоте и изменениям объема и энтропии при фазовом превращении. [c.113]


Смотреть страницы где упоминается термин Равновесие кристаллическая фаза газ: [c.183]    [c.183]    [c.337]    [c.142]    [c.340]    [c.64]    [c.14]    [c.100]    [c.110]    [c.51]    [c.80]    [c.80]    [c.336]    [c.149]    [c.247]    [c.11]    [c.232]    [c.254]    [c.165]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.190 , c.192 ]

Современная общая химия (1975) -- [ c.3 , c.190 , c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие кристаллическая фаза жидкость

Равновесие между раствором полимера и кристаллической или полукристаллической полимерной фазой

Равновесие фазой

Фаза кристаллическая



© 2024 chem21.info Реклама на сайте