Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калий спектр

    Со времени работы Бунзена и Кирхгофа (1860 г.) было известно, что многие металлы под влиянием возбуждения достаточной мощности испускают излучения с длинами (ВОЛн, характерными для каждого из них. Этот факт используется в известном качественном определении И е-лочных и щелочноземельных металлов по цвету пламени. Применяя вместо пламени более мощные электрические источники возбуждения, метод можно распространить на все металлы и многие неметаллы. У некоторых элементов, таких, как натрий и калий, спектры просты и состоят только из нескольких линий, соответствующих определенным длинам волн в спектрах же других металлов, например железа и урана, наблюдаются тысячи отчетливых, хорошо воспроизводимых линий. Элементы, дающие сложные спектры, не могут быть идентифицированы непосредственным визуальным наблюдением возбужденного образца, но их можно распознать при помощи спектроскопа. [c.84]


    Мессбауэровские исследования рубидиевых систем при различных мольных отношениях показали, что образование ферритов происходит при температурах, более высоких, чем в случае ферритов калия. Спектр (рис., спектр 5) представляет суперпозицию трех секстетов с параметрами, близкими к параметрам гексаферрита калия  [c.127]

    Применяя вместо пламени более мощные электрические источники возбуждения, метод можно распространить на все металлы и многие неметаллы. У некоторых элементов, таких, как натрий и калий, спектры просты и состоят только из нескольких линий, соответствующих определенным длинам волн в спектрах же [c.128]

Рис. 51. 8. 469/3. Кровавый кал. Спектр железа. Рис. 51. 8. 469/3. <a href="/info/952263">Кровавый</a> кал. Спектр железа.
    Образцы исследовались в виде таблеток, спрессованных с бромистым калием. Спектры получены в интервалах 700—3600 в отдельных случаях в интервалах 700—2000 смГ  [c.77]

    Хорошо известно, что различные полиморфные формы соединения обычно имеют заметно различные ИК-спектры. Интересно, что для органических соединений это явление было впервые отмечено на спектрах фталоцианиновых пигментов [39, 40] и азокрасителя [40]. Аморфная форма имеет также свой спектр. Показано, однако, что после длительного растирания вещества с бромидом калия спектр таблетки может приближаться к спектру раствора [41]. Другие факторы, могущие влиять на спектр твердого вещества рассмотрены в обзоре [42]. Эти эффекты особенно важны, когда сравнивают спектры неизвестных и известных красителей. Они могут мешать применению корреляций частот полос со строением [43]. [c.203]

    Оптические измерения производились на спектрометре ИКС-12 с отражательной приставкой ИПО-12. Использовались призмы из хлористого натрия и бромистого калия. Спектры снимались при комнатной температуре по точкам. Измерения абсолютного коэффициента отражения выполнялись при угле падения 10°. [c.325]

    Образец —производное сахара маннозы (этиловый эфир 2.5-ангидро-0-маннозы), запрессованное в таблетку из бромистого калия. Спектр получен на инфракрасном спектрофотометре Бекман 1К 10. [c.508]

    Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия [c.63]


    Проанализируйте изображенный ниже МБ-спектр продукта реакции сульфата железа с феррицианидом калия. [c.310]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]

    ИК-спектры асфальтенов, запрессованных с бромистым калием (300 в. ч. КВг/1 в. ч. асфальтенов), снятые на спектрофотометре ИК-10 в области частот 4000—700 см показывают более высокое количество ароматических структур и возрастающую степень их конденсированности в асфальтенах из асфальтита отбензиненной нефти. [c.167]

    Напр мер, для снятия спектров из растворов газ-носитель, содержащий исследуемое вещество, пропускают через растворитель, поглощающий данное вещество. В случае снятия спектров твердых веществ вещество из газа-носителя осаждают на порошок бромида калия и из полученной смеси приготовляют таблетки. Если исследуемое вещество газообразно, то измерения проводят в специальной газовой кювете, в которую вещество поступает в смеси с газом-носителем. Эти методы позволяют работать с меньшими потерями вещества по сравнению с методом улавливания веществ в ловушках. [c.195]

    У окрашенных веществ максимум поглощения света в большинстве случаев находится в видимой области спектра, однако он может быть и в ближней ультрафиолетовой области, как, например, у хромата калия (см. рис. 4.3, кривую /), или в ближней инфракрасной области, как у раствора сульфата меди (кривая 2). [c.181]

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]

Рис. 8. Запись спектров натрия (/), калия (2) н СаОН (.3) с помощью пламенного, спектрофотометра Рис. 8. <a href="/info/250447">Запись спектров</a> натрия (/), калия (2) н СаОН (.3) с <a href="/info/1618919">помощью пламенного</a>, спектрофотометра
Рис. 79. Спектр поглощения хромата (VI) калия (/) и дихромата (VI) калия (2) Рис. 79. <a href="/info/5291">Спектр поглощения хромата</a> (VI) калия (/) и дихромата (VI) калия (2)
    М. С. Цвет впервые применил открытый им адсорбционный метод для разделения различно окрашенных растительных пигментов. При этом использовался столбик окиси алюминия, в котором компоненты сложного пигмента распределялись друг за другом, подобно различным лучам в спектре. Такой столбик адсорбента Цвет назвал хроматограммой. Это название применяется и в настоящее время, даже если адсорбированные вещества бесцветны. В последнем случае границы между зонами определяют другими методами. Для этого иногда применяют проявление подходящим химическим реактивом. Так, например, при анализе неорганических соединений часто проявляют растворами сернистого натрия, железистосинеродистого калия и т. д. Используют также другие методы, как например метод радиоактивных изотопов. [c.68]


    Сущность работы. Одновременное определение натрия, калия и кальция основано на существенном различии спектров излучения этих элементов, возбужденных в пламени горелки длина волны излучения атомов натрия равна 589, калия - 768, кальция 622 нм. Это позволяет выполнять анализ смеси указанных элементов без их разделения. Метод добавок дает возможность проводить определение каждого из элементов в растворах сложного состава. [c.205]

    Первое исследование клатратных соединений гидрохинона методом ИК-спектроскопии было проведено Гекстером и Гольдфарбом [16]. Эти исследователи предполагали, что наличие или отсутствие тонкой структуры вращения в этих областях спектров, относящихся к молекулам в полостях, покажут, вращаются ли эти молекулы или нет. При отсутствии какой-либо тонкой структуры некоторые сведения об ограничении молекулярного вращения можно получить из ширины колебательных полос. Авторы [16] изучали клатратные соединения гидрохинона с хлористым водородом, сероводородом, двуокисью углерода и двуокисью серы, распределенные в таблетках бромистого калия. Спектры, полученные для клатратных соединений с хлористым водородом и сероводородом, подтвердили, что решетка Р-гидрохинона отличается от решетки а-гидрохинона. [c.577]

    Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя образец минерала, они обнаружили его в спектре линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского саез1и5 — сине-серый), так как в спектре этого металла самой яркой была именно синяя линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского гиЬ1с1из — темно-красный). [c.103]

    Перед фотометр и рованием каждого спектра следует проверять установку пера потенциометра прн закрытой щели микрофотометра, если необходи ю, то корректировать корректором на усилителе. Если на диаграммную ленту нeoбxoди ю перенести деления миллиметровой шкалы, изображенной на спектрограмме, то аналогично фотометри-рованию спектра фотометрируется миллиметровая шкала. Для этого маховичком 9 она устанавливается так, чтобы ее деления проектировались бы на входную щель микрофотометра. Каждое деление миллиметровой п]калы будет зарегистрировано на диаграммной ленте в виде четкого максимума. [c.59]

    В качестве наглядного примера рассмотрим МБ-спектр Ре Ре "(СЫ)й, где Ре " и Ре " обозначают железо(П1) в слабом и сильном кристаллическом полях соответственно. Это вещество содержит железо в двух различных химических окружениях, и, чтобы вызвать переходы в различных ядрах, требуются у-лучи двух различных энергий. Для получения МБ-спектра источник передвигают относительно фиксированного образца и строет график зависимости поглощения у-лучей от скорости движения источника (рис. 15.2). Полосы соответствуют скоростям движения источника, при которых поглощение у-лучей источником максимально. Отрицательные относительные скорости соответствуют движению источника от образца, а положительные относительные скорости— движению источника к образцу. Относительные скорости движения источника наносят на ось абсцисс рис. 15.2 и эту величину связывают с энергией у-лучей. Для источника Ре, испускающего у-лучи с энергией 14,4 кэВ, энергия меняется на 4,8-10 эВ, или на 0,0011 кал/моль на каждый 1 мм/с скорости движения источника. Этот результат может быть рассчитан из уравнения [c.288]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    Азотистые основания очищались по методике [16], акридин — перекристаллизацией из этилового спирта, затем возгонкой, индол — возгонкой, карбазол — хроматографической очисткой на окиси алюминия и возгонкой. Тетрахлориды титана и олова марки безводные также подвергались очистке в токе инертного газа. Были приготовлены 0,1- и 0,01-молярные растворы азоторганических соединений в декане и в очищенном дизельном топливе. Тетрахлориды титана и олова концентрации I и 0,1-молярные были-приготовлены в гептане. Гептан, используемый в Качестве растворителя солей металлов, подвергался очигтке 1-молярным раствором четыреххлористого титана, затем перегонкой над гидроокисью калия. Чистота растворителей контролировалась УФ-спектрами. Исследование проводили в боксе в атмосфере очищенного от кислорода и влаги аргона при комнатной температуре и атмосферном давлении. 100 мл азотистых соединений конЦейТраций 0,1- или  [c.117]

Рис. 63. Спектры поглощения промежуточных продуктов (/), анион-радикала пирена (2), катион-ради-кала диэтиланилина (3) при импульсном фотолизе пирена в аце-тоиитриле в присутствии 0,03М диэтиланилина Рис. 63. <a href="/info/2753">Спектры поглощения</a> <a href="/info/6222">промежуточных продуктов</a> (/), <a href="/info/31048">анион-радикала</a> пирена (2), <a href="/info/985561">катион-ради</a>-кала диэтиланилина (3) при <a href="/info/2975">импульсном фотолизе</a> пирена в аце-тоиитриле в присутствии 0,03М диэтиланилина
    Для изучения новеденпя сульфат-анион-радикала готовят исходный 0,1 М раствор персульфата калия, натрия или аммония в воде. Рабочие растворы готовят разбавлением исходного раствора в 10 раз. Кинетика гибели SO исследуется ири длине волны 455 нм. Снимают спектр поглощения СОз в присутствии 0,1 М НаНСОз и определяют коэффициент экстинкции поглощения SO4 прн длине волиы 455 пм. [c.194]

    Для получения количественных данных из спектров твердых веигеств применяют метод прессованных таблеток. Несколько миллиграммов вещества тщательно растирают примерно с 0,3 г совершенно сухого бромида калия и с помощью ручного пресса получают тонкий диск, для которого записывают спектр поглощения. Во время прессования образец желательно вакуумировать, при этом получаются почти прозрачные таблетки, представляющие собой 0,1—0,5%-ный твердый раствор вещества в бромиде калия. [c.209]

    Если образец разрушается при растирании и содержит воду (многие биохимические препараты), то таблетки готовят методом лиофильной сушки. Для этого к водному раствору вещества добавляют бромид калия и раствор быстро замораживают, разбрызгивая его на холодной поверхности или погружая в хладагент колбу с небольшим количеством раствора, распределенного по стенкам колбы. Вакуумированием образца через ловушку с жидким азотом пз пего полностью удаляют воду, а из полученной тонкой смеси вепгества с бромидом калия прессуют таблетку без предварительного растирания. С помощью конденсоров и других специальных микроприставок можно снять спектр таблетки массой 2 мг, содержащей несколько микрограммов исследуемого вещества, что очень важно при работе с биохимическими препаратами, количества которых часто ограничены. [c.209]

    Радцпг В. A. Спектры ЭПР, структура и конформации свободных ради калов в полипропилене и полибутене-1.— Высокомолекулярные соедине ния, 1975, т. А17, с. 154—162. [c.186]

    Получив широкое признание как аналитический метод в нефтяной промышленности, масс-спектрометрия начала внедряться в другие области науки и промышленности для установления структуры и химического поведения органических соединений в многообразных реакциях. При переходе от углеводородов к соединениям с различными функциональными группами были решены вопросы, связанные с адсорбционной способностью, агрессивностью и нестабильностью соответствующих органических соединений. Одновременно были получены масс-спектры высокомолекулярных представителей кал(дого пз рассматриваемых классов. Можно без преувеличения сказать, что успехи химии природных соединений последних лет во многом связаны с интенсивным использованием масс-спсктрометра. Именно благодаря масс-спектрометрии [c.4]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    ИК-спввтры снимались на образцах в виде та леток в смесн с (Зромистым калием на спектрофотометре Спектры фрак- [c.73]

    Существование этого изменения характера адсорбции подтверждается экспериментальными данными. Мейер [252] проводил бомбардировку ионами калия нитей платины, меди и алюминия, покрытых адсорбированным натрием, и во время происходящего при этом испарения натрия наблюдал в спектре линию О натрия. Ионы натрия, которые десорбируются, по-видимому, под влиянием бомбардировки ионами калия, во время испарения превращаются в атомы, проходя через несколько возбужденных состояний, вызьпзающих испускание света. В том случае, когда количества адсорбированного натрия малы, испускание света не наблюдается. Оно становится более заметным при увеличении количества адсорбированного натрия, затем проходит через максимум и, наконец, снова уменьшается в присутствии более значительных количеств адсорбированного натрия. Это явление объясняется тем, что при низких значениях О натрий освобождается с поверхности в виде ионов, при более высоких значениях эти ионы нейтрализуются, переходя в атомы, а при еще более высоких значениях 6 натрий находится на поверхности в виде атомов, которым нет необходимости нейтрализоваться при десорбции. [c.138]

    ИК спектры поглощения могут быть измерены для веществ, находящихся в любом агрегатном состоянии. Если вещество необходимо исследовать в твердом состоянии, то его тщательно измельчают, перемешивают со спектрально чистым бромидом калия ( 1 мг вещества на 250—300 мг КВг) и затем подвергают прессованию в металлической форме в специальных прессах. В результате получают тонкие (менее 1 мм) таблетки. Вместо КВг можно использовать чистое вазелиновое масло (нуйол), в капле которого растирают несколько милиграммов твердого вещества. Однако в этих случаях приходится учитывать некоторое искажение [c.142]

    Если при реакции мольное соотношение между K4[Pe( N)e] и ионами Ре(П1) или Kd[Fe( N)e] и ионами Ре(П) равно единице (1 1), то получают растворимую берлинскую лазурь состава КРе [Ре1 (СЫ)б]. Сравнение мёссбауэровских спектров этого соединения со спектрами нерастворимой берлинской лазури и турнбулевой сини показывает, что речь идет действительно о гексацианоферрате(П) калия-железа (П1). [c.639]


Смотреть страницы где упоминается термин Калий спектр: [c.205]    [c.557]    [c.78]    [c.129]    [c.76]    [c.79]    [c.199]    [c.161]    [c.162]    [c.557]    [c.403]    [c.141]    [c.79]   
Курс неорганической химии (1963) -- [ c.193 , c.197 ]

Основы общей химии Том 3 (1970) -- [ c.17 ]

Курс неорганической химии (1972) -- [ c.174 , c.177 ]




ПОИСК







© 2024 chem21.info Реклама на сайте