Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метиловый спирт величина

    Пример. Необходимо рассчитать величину свободной энергии реакции обрааованИя метилового спирта из водорода и окиси углерода [c.117]

    Согласно записанному выше правилу, для определения величины свободной энергии реакции образования метилового спирта из окиси углерода и водорода необходимо сложить уравнения (64а) и (65а) [c.118]


    При погру кении твердого вещества в жидкий нефтепродукт выделяется теплота смачивания. Тепловой эффект смачивания зависит от природы вещества и химического состава нефтепродукта. По величине теплоты смачивания можно судить об адсорбируемости различных веществ на том или ином адсорбенте. Так, например, теплота смачивания силикагеля (в ккал/кг) метиловым спиртом 15,3, этиловым спиртом 14,7, бензолом 8,1, пентаном и гексаном 3,1, а теплота смачивания цеолита 1Ча к-гептаном составляет 32,2 ккал/кг. Из этих данных видно, что цеолит обладает значительно большей адсорбционной способностью по отношению к нормальным парафиновым углеводородам, чем силикагель. В то же время метиловый и этиловый спи])ты, а также бензол лучше адсорбируются силикагелем, чем пентан и гексан. [c.79]

    Если концентрация метилового спирта в растворе достигает заметной величины, наступает вторичная реакция, протекающая согласно нижеприведенному уравнению  [c.63]

    Для экспериментального изучения процессов диффузии в широкой окрестности критических точек расслаивания были использованы методика и установка, описанные в гп. II. 6, метод спектроскопии оптического смешения. Значения В определялись по полуширине спектральной линии рассеяния, по анализу спектров смешения. Та же установка позволяла измерить суммарную интенсивность излучения, зависящую от величины (д/1/дС ), и тем самым на основе (1У.1.3) проводить изучение подвижности в /30/. В результате исследований систем нитробензол-гептан, нитробензол-декан и метиловый спирт-гептан /92, 93/ было выяснено, что показатель степени в (1У.1.9) лежит в пределах 0,63 + 0,04, а для 1д/1 /вс ) и имеют место соотношения [c.57]

    Температура плавления, как правило, с повышением молекулярного веса возрастает, но метиловый и этиловый спирты представляют собой в этом отношении исключение, так как они плавятся при несколько более высокой температуре, чем третий член ряда — пропиловый спирт. Такая же незакономерность замечается и в том, что удельный вес метилового спирта несколько-больше, чем этилового. Удельные веса от второго до девятого члена ряда опять постоянно повышаются. Молекулярный объем нормальных первичных спиртов также возрастает ог члена к члену на постоянную величину. [c.113]

    В неводных растворителях соли также повышают поверхностное натяжение, причем величина этого эффекта зависит от природы растворителя. Так, в гомологическом ряду спиртов способность повышать поверхностное натяжение быстро падает с увеличением молекулярного веса растворителя. В этиловом спирте эта способность вдвое меньше, чем в метиловом, а в амиловом она совсем незначительна. Объяснение этому явлению. следует, по-видимому, искать во влиянии силового поля молекул растворенной соли на молекулы поверхностного слоя. Такое влияние обратно пропорционально толщине углеводородной части молекул растворителя, образующих поверхностный слой. Экранирующее действие мономолекулярного слоя метилового спирта невелико, тогда как в молекуле амилового спирта четыре группы СНа образуют такой плотный экран, что молекулы соли уже слабо влияют на свойства поверхностного слоя. [c.32]


    В неводных растворителях неорганические электролиты также повышают поверхностное натяжение, причем величина этого эффекта зависит от природы растворителя. Так, при введении иодида натрия в метиловый спирт сильно повышается поверхностное натяжение, у этилового спирта поверхностное натяжение повышается примерно вдвое меньше, в спиртах большего молекулярного веса эффект еще меньше. [c.118]

    Теплота адсорбции зависит как от природы адсорбента, так п от природы адсорбируемых газов. Для активированного угля найдены следующие величины теплоты адсорбции паров в ккал кг этиловый спирт — 15, метиловый спирт — 13,1, метан — 4,5, бензол — 14,7. [c.108]

    Коэффициент а раствора почти всех солей в метиловом спирте близок к единице в этиловом спирте то же самое, хотя а несколько уменьшается, но имеет значения близкие к единице (см. табл. 7) в спиртах, у которых диэлектрическая проницаемость еще ниже, как, например, в бутиловом спирте, величины а еще меньше, но для многих солей примерно одинаковы. [c.108]

    Величины Ig галогенидов щелочных металлов в метиловом спирте примерно равны 1,5—2,0, в этиловом — 2,0—3,0, в бутиловом — больше [c.188]

    В связи с тем, что Ig Yo протона определяет практически важную величину абсолютной кислотности, подробно исследован Ig Yo ДЛя разных кислот. При этом оказалось, что Ig Yo минеральных кислот не сильно отличаются между собой. Так, в метиловом спирте Ig Yo Д H I — 1,97, для серной кислоты Ig Yo — 1,85. Это позволяет пользоваться Ig Yo сильных кислот для характеристики изменения кислотности при переходе от одного растворителя к другому. [c.202]

    Таким образом, можно ожидать, что изменение соотношения в силе первой и второй константы диссоциации двухосновных кислот по порядку величины будет равно 21g 7 , т. е. в первом приближении для метилового спирта — 1,44, для этилового — 1,86 и бутилового — 2,06 единицы рК. [c.356]

    Разность энергии s-, 6-, а- и р-колебаний в жидкой D2O и Н2О при 25°С равна —16 220 Дж/моль. Разность энергий s-, Ь- и -колебаний в парах D2O и Н2О равна —14 800 Дж/моль. При замене водорода на дейтерий разность энергий характеристических колебаний пара и жидкости здесь возрастает на 1420 Дж/моль. Заметим, что (в отличие от метилового спирта) основной вклад в эту разность вносит изотопический сдвиг частот внеплоскостных деформационных р-колебаний водородной связи. Экспериментальная величина разности энтальпий парообразования тяжелой и обычной воды составляет 1380 Дж/моль. [c.68]

    Глицерин, касторовое масло, расплавленное стекло обладают большой вязкостью. Вода, бензол, метиловый спирт, диэтиловый эфир — жидкости с малой величиной вязкости. [c.55]

    Все более широкое применение физических методов измерения и лабораториях привело к дальнейшей разработке методов определения диэлектрической постоянной (ДП). Этот метод измерения обладает особыми преимуществами при ректификации смесей, содержащих воду (ДП = 80), а также смесей веществ с резко отличными значениями ДП. В качестве таких примеров можно назвать смеси уксусной кислоты (ДП = 6,13) и уксусного ангидрида (ДП = 22,2), а также смеси метилового спирта и толуола. Азеотропная смесь метилового спирта и толуола, образующаяся при ректификации, имеет значение ДП=26,8 по сравнению с величиной ДП для исходных компонентов, равной соответственно 33,8 и 2,37 [61]. На рис. 425 изображено устройство Эме [61 ], используемое для контроля процесса ректификации. Измерительная ячейка этого устрой- [c.518]

    Теория Штерна при отсутствии специфической адсорбции была уточнена Грэмом, который использовал вытекающее из теории Штерна при р1 = 0 представление о двойном электрическом слое как о двух последовательно соединенных конденсаторах. Согласно Грэму, при отсутствии специфической адсорбции интегральная и дифференциальная емкости зависят только от величины заряда поверхности и не зависят от концентрации электролита. Поэтому по значению дифференциальной емкости для одной какой-либо концентрации можно рассчитать кривые емкости для любой другой концентрации. Такие расчеты для не обладающих специфической адсорбцией растворов фтористого натрия в воде, а также в метиловом спирте были выполнены Грэмом. Хорошее совпадение рассчитанных кривых дифференциальной емкости с экспериментально измеренными (рис. 42) может служить доказательством правильности предположения о независимости емкости плотного слоя (при отсутствии специфической адсорбции) от концентрации электролита. Кроме того, из согласия опытных данных с расчетом следует, что теория диффузного слоя в том виде, в каком она была использована Штерном, более применима на практике, чем этого можно было ожидать, исходя из ряда упрощающих допущений теории. [c.230]

    Состав продуктов радиолиза спирта существенно меняется в присутствии 62. Для метилового спирта величины С приведены в табл, 10, для других спиртов —в табл. 11, Различие в продуктах радиолиза объясняется следующими реакциями СНзОН СНз, Н , СН2ОН. [c.43]

    В пятидесятых годах термодинамическим методом были определены барьеры внутреннего вращения очень большого количества молекул. Например, для метилового спирта величина была найдена равной 1,6 ккал/моль [81], тогда как более точное значение, как мы указывали, равно 1,16 0,03 ккал/моль. Описанный в предыдущем разделе расчет энтропии этана, позволивший определить барьер с погрешностью в 5%, явла исключением, а вообще говоря, точность термодинамичесйййй метода значительно ниже точности других методов. [c.48]


    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]

    Весовой метод БЭТ основан на периодическом взвешивании навески катализатора, находящейся в адсорбционной системе. В этом методе полностью отпадает надобность в калибровке мертвых пространств . На рис. 30 показана схема установки для измерения поверхности катализатора весовым методом по адсорбции паров метилового спирта при комнатной температуре. Основной ее частью является высоковакуумная адсорбционно-весовая система, в которую входят колонки / с внутренними пружинными весами. К спиралям 2 весов подвешены чашечкн 3 с навесками исследуемых образцов величиной 0,05—0,1 г, взвешенные с максимально возможной точностью. Кварцевые или стеклянные спирали предварительно калибруют аналитическими разновесами. Их чувствительность находится в пределах от 0,8- до 2,0-10 5 г. Линейные растяжения спиралей во время опытов измеряют катетометром. [c.77]

    На рис. XXIV, 2 показана зависимость перенапряжения водорода т] от логарифма плотности тока на различных электродах. Хорошо видно, что формула Тафеля соответствует опыту в очень широком интервале величин г и что значения Ь близки для разных металлов в водных растворах. Те же величины Ь наблюдаются и для металлов, погруженных в раствор в метиловом спирте и эфире. [c.621]

    При адсорбции углеводородных газов и нефтяных паров на поверхности твердых тел выделяется тепло. По теплоте адсорбции судят об адсорбируемости данного вещества на определенном адсорбенте. Количество тепла, выделяющееся при адсорбции, зависит от природы адсорбируемого вещества и адсорбента. Например, найдены следующие величины теплоты адсорбции на активированном угле паров различных веществ (в ккал/молъ) этиловыйс нирт 15, бензол 14,7, метиловый спирт 13,1, метан 4,5. Теплоты адсорбции паров [c.78]

    Эти результаты были получены при изучении ароматических углеводородов, выделенных при помощи насыщенного раствора сернистого ангидрида в метиловом спирте. Однако этим способом не удается извлечь все ароматические углеводороды, содержащиеся в масляных фракциях нефтей, не извлекаются ароматические углеводороды с длинными алкильными цепями. Судя по величинам плотности ароматических углеводородов, исследованных в Гроз-НИИ (табл. 7), они относятся к соединениям, содержащим короткие алкильные цени, так как углеводороды, например, такие, как триоктилбензол, имеют плотность 0,857, а октилнафталин 0,940 [23] и таким образом в изученные ГрозНИИ ароматические фракции не попадают. [c.19]

    В сыром пектине содержатся пентозаны, галактозаны и тому подобные примеси, которые могут быть в значительной мере удалены с помощью повторных осаждений. В результате гидролиза очищенного таким образом пектина образуется галактуроновая кислота и 11,5% метилового спирта. При определениях молекулярного веса производных пектина были получены очень высокие величины. Поэтому в настоящее время считают, что пектин является полигалактуроновой кислотой, карбоксильные группы которой частично этерифицированы метиловым спиртом, и подобно целлюлозе имеет цепное строение. [c.458]

    Как следует из данных Окерлофа, линейная зависимость величин Ig Yo солей от 1/е имеет место и для галогенидов ш,елочных металлов в смесях метилового спирта с водой, содержащих до 90% метилового спирта. При дальнейшем увеличении содержания спирта для ряда солей наблюдаются отклонения от линейной зависимости, что связано с эффектом пересольвата-ции ионов — заменой гидратной оболочки па сольватную, происходящей при большом содержании спирта. [c.188]

    Из табл. 24 следует, что ионное произведение среды [М0Н 1 [М0-] падает от воды к метиловому, этиловому и бутиловому спиртам. Величина рЛГи = —lg Ки возрастает до 19 для этилового спирта. Интересно отметить, что отношение констант карбоновых кислот к ионному произведению среды в спиртах и в их смесях с водой, как и в ряде других растворителей, остается неизменным, тогда как отношение констант кислот других химических типов, и в первую очередь сильных кислот, к ионному произведению среды сильно изменяется. [c.277]

    На рис. 80 представлена зависимость рЯ ряда солей тетразамещенных аммониевых оснований от 1/е растворителя. Согласно приведенным данным, рЯ EtiN l и Et4Nl в ряду дифференцирующих растворителей линейно зависит от 1/е. Величина рЯ в метиловом спирте, как в нивелирующем растворителе, отклоняется от этой зависимости. Такой же характер имеет зависимость для пикратов четвертичных аммониевых оснований. Зависимость рЯ от 1/е солей щелочных металлов К1 и KPi в ряду дифференцирующих растворителей также линейна, точки для нивелирующих растворителей отклоняются от прямой (рис. 81). Зависимость рЯ солей не полностью замещенных аммониевых оснований от 1/е, как и кислот, уже не линейна. [c.321]

    Отсюда следует, что увеличение коэффициента ионного распределения и уменьшение величины адсорбции органического иона из неводных сред будут при обмене на двухвалентный ион еще больше, чем при обмене минеральных ионов. Экспериментальные исследования показывают, что при одинаковой степени заполнения емкости коэффициент распределения при обмене морфина на кальций возрастает при переходе от воды к метиловому спирту почти в 1000 раз, в то время как константа ионного обмена ионов цезия на ионы кальция только в 10 раз (рис. 93). Зависимость Ig от 1/е в этом случае уже не линейна, так как ЛС/п не зависит от диэлектрической проницаемости. Величина (АС7пм пн о) в уравнении не остается постоянной с изменением степени заполнения адсорбционного объема органическими ионами адсорбционные потенциалы различно изменяются с изменением емкости, поэтому влияние растворителя на коэффициент распределения зависит от степени заполнения емкости адсорбента органическими ионами. Если с изменением степени заполнения С/пм становится сравнимой с или больше нее, то будет происходить изменение знака (i7i,r — /пл)- В этом случае константа с увеличением степени заполнения емкости органическим ионом будет не возрастать, а падать. [c.375]

    В табл. 36, заимствованной из обзора Плескова, приведены величины Е для аммиака, гидразина, ацетонитрила, муравьиной кислоты, воды, метилового и этилового спиртов. Из этих данных следует, что различия в потенциалах и N8 электродов в воде и метиловом спирте, а также в воде [c.397]

    Вместе с А. М. Александровой мы исследовали поведение электродов в широкой области PH, в серии этаноло-водных растворов, от воды до абсолютного этилового спирта. Для сопоставления были также произведены измерения в абсолютном метиловом спирте и в кислом растворителе — ледяной уксусной кислоте. Шкала pH для этаполоводных смесей была расширена в кислую область до pH == —0,8 благодаря использованию солянокислых растворов, а в щелочную область — до рНр = 16,0. Б уксусной кислоте кислую область удалось продлить до рНр= —1,7, при помощи сверхкиспых растворов но Расселю и Камерону, а в щелочной области крайняя точка соответствовала 8,5 рНр. Шкала pH в спиртовых растворах создавалась рядом буферных смесей в соответствующих растворителях. Величины pH растворов были измерены водородным электродом в цепи относительно стандарта — 0,1 н. раствора НС1 в соответствующем растворителе. Значение рНр стандартов рассчитывалось по данным о коэффициентах активности, имеющимся в литературе. [c.432]

    Таким образом, к концу XIX в. формула глюкозы в виде альдегидоспирта могла бы считаться выясненной, если бы не ряд фактов, не объясняемых этой формулой. Так, оказалось, что глюкоза вступает не во все альдегидные реакции, например не дает бисульфитного соединения. Изучение глюкозы показало также, что не все ее гидроксильные группы имеют одинаковые свойства. Например, одна из метильных групп пентаметилглюкозы легко отщепляется при гидролизе, остальные четыре удерживаются несравненно прочнее. При действии метилового спирта и хлористого водорода на глюкозу один из ее гидроксилов подвергается метилированию. Остальные гидроксильные группы в этих условиях не реагируют, их можно метилировать лишь в более жестких условиях (действием иодистого метила и оксида серебра либо диметилсульфата и щелочи). Наконец, при растворении глюкозы в воде наблюдается постепенное изменение величины удельного вращения, так называемая мутаро-тация. Свежеприготовленный водный раствор глюкозы имеет 1а]о Ч-П2° при стоянии вращение постепенно падает, достигая значения [а]о +52,5°. Это конечное вращение, как удалось выяснить, создается равновесной смесью двух форм а-глюкозы и р-глюкозы, имеющих разные вращения. Чистая -форма выделяется при обычной кристаллизации из воды, чистая 3-форма — при кристаллизации из пиридина. [c.283]

    Таким образом, при переходе от Н- к D-связи энергия валентного и деформационного колебаний уменьшается примерно на 25% и соответственно уменьшается разность A q. Образование водородной связи сопровождается изменением крутильных t колебаний групп X—Н или X—D и возникновением валентных а- н деформационных (3-колебаний в группах X—H...Y или X—D...Y. Замещение в группе X—Н водорода дейтерием вызывает уменьшение частоты, а следовательно, и энергии крутильных и деформационных колебаний примерно в 1,3—1,4 раза. Расчеты И. Б. Рабиновича [5], основанные на экспериментальных данных о частотах колебаний, показывают, что при 25°С замещение водорода в гидроксильной группе метилового спирта на дейтерий в паре вызывает уменьшение энергии s-, Ь- и i-колебаний на 8350 Дж/моль. В жидкой фазе при таком замещении энергия s-, Ь-, а- и р-колебаний уменьшается на 8700 Дж/моль. Следовательно, разность энергий указанных характеристических колебаний в паре и жидкой фазе при замене Н на D возрастает на 343 Дж/моль. Эта величина в пределах ошибок опыта равна разности энергий диссоциации D-связи и Н-связи в метиловом спирте. [c.68]

    После сборки вакуумного аппарата необходимо провести его испытание на герметичность. Сначала проверяют величину вакуума, создаваемого насосом, подсоединив буферную емкость на 5—10 л. Затем последовательно идут дальше, проверяя прежде всего краны и шлифы. Прежде чем перейти к отдельным деталям, проверяют места спаев, в которых часто обнаруживаются дефекты. Целесообразно расположить краны на установке таким образом, чтобы можно было отдельно испытать на герметичность различные ее части. Для испытания герметичности используют высокочастотный течеискатель типа Тесла с электродом в виде щетки (рис. 199). В месте пропускания воздуха проскакивает искра. Можно также прослушать аппарат со стетоскопом или же, создав избыточное давление около 0,5 ати, предполагаемые места пропусков смазать мыльным раствором. Изящный метод состоит в том, что на аппарат во время его нахождения под вакуумом наносят кисточкой слабощелочной раствор флуоресцеина или эозина в метиловом спирте. Затем его облучают в темноте ультрафиолетовым светом при этом места пропусков будут отчетливо флуоресцировать [83]. Специальные методы испытаний для высокого вакуума описаны Лапортом [76] и Мёнхом [79]. Места npony iioii можно уплотнить пицеином или замазкой, еслп термические нагрузки не очень высоки. Однако практика показывает, что лучше всего или заменить отдельную деталь, или запаять место пропуска. [c.297]


Смотреть страницы где упоминается термин Метиловый спирт величина: [c.221]    [c.86]    [c.177]    [c.32]    [c.113]    [c.269]    [c.33]    [c.67]    [c.324]    [c.102]    [c.287]    [c.63]    [c.341]    [c.524]    [c.195]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.128 ]

Методы органической химии Том 2 Издание 2 (1967) -- [ c.901 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.901 ]




ПОИСК





Смотрите так же термины и статьи:

Метиловый спирт



© 2025 chem21.info Реклама на сайте