Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний координационные

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]


    Эти структуры отличаются расположением слоев шаров (показаны на рис. 1.82 в горизонтальной плоскости). При гексагональной упаковке шар каждого третьего слоя находится точно над шаром первого слоя. В кубической гранецентрированной структуре шары третьего слоя расположены над лунками между шарами первого слоя. В обоих случаях степень заполнения пространства шарами одинакова и составляет 74,05%- Координационное число атомов в том и другом вариантах структуры равно 12. Примером металла, имеющего кубическую плотнейшую упаковку, является медь, гексагональную — магний. [c.146]

    Химически стойкие и термически устойчивые полимеры получаются при сочетании в металлорганических соединениях ковалентных и координационных связей. Такие полимеры названы клешневидными металлорганическими полимер а-м и. Исходными мономерами могут служить ацетилацетонаты цинка, магния, меди, никеля, кобальта, бериллия и других металлов. Ацетилацетонаты взаимодействуют с тетракетонами с отщеплением [c.506]

    Основываясь на том факте, что при электролизе на катоде выделяется только половинное количество магния, А. П. Терентьев предложил координационную формулу диэфирата реактива Гриньяра, в котором координационное число одного из атомов магния равно шести  [c.262]

    Применяемый в качестве растворителя эфир принимает участие в реакции и образует с магнийорганическими соединениями эфираты. Исследование эфирных растворов магнийорганических соединений с помощью ИК-спектров показало, что существуют координационные связи между кислородом эфира и атомом магния. [c.211]

    Химические свойства воды. Вода — весьма реакционноснособное вещество. Она взаимодействует с окислами металлов и неметаллов, образуя гидраты основного и кислотного характера. Вода обладает амфотерными свойствами. При взаимодействии со щелочами она ведет себя как кислота, а с кислотами как основание. Активные металлы взаимодействуют с водой с выделением водорода. Например, калий и натрий разлагают воду без нагревания, магний при нагревании, а железо при сильном нагревании. В результате наличия в молекуле воды отрицательно заряженных ветвей электронного облака она способна входить в состав координационных соединений в виде лигандов с образованием донорно-акцепторной связи (Си(Н20)4]804-Н20. [c.13]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]


    Координация азота. При взаимодействии аммиака с галидами рассматриваемых металлов в отсутствие воды образуются аммиакаты вплоть до типа [М(ЫНз)8]Х2- Аммиакаты Ве (И) неустойчивы в водном растворе, вследствие сильной тенденции к координации кислорода воды или гидроксогрупп. В избытке аммиака и солей аммония констатировано присутствие в водном растворе аммиачных комплексов магния и кальция. Максимальное координационное число кальция (II) в этих условиях не превышает 6. Аналогичные комплексы бария (II) в растворе не существуют. [c.195]

    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    Металлы с кубической гранецентрированной и гексагональной решетками в твердом состоянии. Рентгенографические и нейтронографические исследования показывают, что металлы, обладающие в твердом состоянии плотной упаковкой атомов, после плавления сохраняют ее. Это объясняется тем, что при переходе в жидкое состояние электронная конфигурация этих металлов и характер связи не изменяются. Действительно, атомы алюминия при конденсации металлического пара теряют внешний Зр-электрон. Образовавшиеся ионы А1+, обладая 2р 35 -конфигурацией, упаковываются в гранецентрированную кубическую решетку с параметром а = 4,04 Л. При плавлении электронная структура ионов не изменяется и плотная упаковка сохраняется. Незначительное уменьшение координационного числа связано с усилением трансляционной составляющей теплового движения атомов. Бериллий (конф. 15 2з ) и магний (конф. 2р 35 ) обладают высокими вторыми ионизационными потенциалами, поэтому при образовании кристалла их атомы отдают лишь один 5-электрон. Оставшийся второй -электрон придает сферическую форму однозарядным ионам, которые образуют в кристалле гексагональную решетку. При переходе в жидкое состояние электронная конфигурация ионов этих металлов и плотная упаковки существенно не изменяются. [c.176]

    В этой схеме показано строение фрагмента образующегося комплекса. С атомом магния(П) связаны, по-видимому, и другие лиганды (например, молекулы воды), поскольку координационное число 3 для магния(П) нехарактерно. [c.385]

    А. П. Терентьев предложил новую координационную формулу диэфирата, в которой атом магния обладает координационным числом, равным шести  [c.221]

    Соединения магния (П). Во всех устойчивых соединениях степень окисления магния +2, а координационное число 6. Ниже приведены некоторые сведения о соединениях Mg (II). [c.518]

    Из веществ с общей формулой МХг двуокись кремния (отношение радиусов 0,29) образует кристаллы с тетраэдрической координацией четырех ионов кислорода вокруг каждого иона кремния фторид магния (отношение радиусов 0,48) и двуокись олова (отношение радиусов 0,51) образуют кристаллы с октаэдрической координацией шести анионов вокруг каждого катиона (структура рутила, рис. 18.2), а фторид кальция (отношение радиусов 0,73) образует кристаллы с кубической координацией восьми анионов вокруг каждого катиона (структура флюорита, рис. 18.3). Координационное число увеличивается по мере возрастания отношения радиусов, как показано на рис. 18.1. [c.515]

    Допускается существование недиссоциированного субгидрата бромистого магния, в котором атом магния координационно связан с двумя молекулами воды  [c.80]

    Удивительно, что какой бы моделью ни описывались свойства, добавление КС1 или Rb l приводит к такому понижению точки замерзания, которое отвечает введению двух новых типов частиц в расплав Mg Ia, хотя ионы С1 в этом расплаве уже присутствуют. Это указывает на то, что в чистом расплавлен ном хлориде магния координационные числа ионов строго фиксированы. [c.277]

    Для многих химических элементоа (особенно металлов) характерны решетки куба с центрированными гранями (рис. 174) и типа гексагональной плотной упаковки, примером которой может служить показанная на рис. 175 решетка металлического магния. Координационное число обеих структур равно двенадцати. Обе они допускают упаковку шаров максимально возможной и притом одинаковой плотности. Такие упаковки показаны на рис. 176. [c.358]


    Для функционирования хлорофилла очень важен не только его цвет, но и способность к комплексообразованию. Центральный ион магния координационно ненасыщен и способен присоединять с каждой из двух сторон плоской магнийпорфириновой системы по одной электронодонорной молекуле. В частности, с одной стороны может быть координирована молекула воды, либо в составе неизвестного в данное время ассоциата, либо, весьма вероятно, непосредственно. С другой стороны, может быть координирован пластохинон. Связыванию таких диполярных протонных молекул, как вода, может также способствовать кетогруппа в положении 9 хлорофилла, поскольку она делает возможным образование комплекса типа  [c.352]

    Магний и кальций в растениях и животных. В биохимии растений особую роль играет комплексное соединение магния — хлорофилл (см. рис. 13.3, б). Хлорофилл — важнейшая часть фотосинтетического аппарата растительной клетки. Координационные связи между донорными атомами азота порфи-ринового цикла и катионом магния в хлорофилле не очень прочны, поскольку не реализуется максимально возможное для магния координационное число 6. Поэтому Mg2+ может быть замещен другими двухзарядными катионами — Си +, № +, Со +, Ре +, Zn , а также двумя катионами Н+. Однако ни один из этих катионов, внедренных в хлорофилл, не может повторить координационное поведение Mg +. Комплексные соединения порфиринового цикла с другими катионами не обеспечивают фотосинтетическую активность хлоропласта. При недостатке магния в почве у растений возникает эндемическое заболевание — хлороз. [c.302]

    Атомно - металлические кристаллы вследствие не-локализованностн металлической связи хара1 теризуются высокими координационными числами. Для них наиболее характерны три типа кристаллических решеток (рис. 65) кубическая гранецентрирован-ная (к. ч. 12), гексагональная (к. ч. 12) и кубическая объемноцентри-рованная (к. ч. 8). Кубическую гранецентрированную решетку имеет, например, медь, кубическую объемноцентрированную — железо, гексагональную — магний. [c.101]

    Кристаллы оксида магния относятся к структурному типу Na I. Каковы координационные числа Mg + и и как это сказывается на составе оксида магния  [c.93]

    Во всех устойчивых соединениях степень окисления магния -F 2, а координационное число 6. Степень окисления +2 часто проявляется также и в интерметаллических соединениях, например, MggAla, MgaSba, MgaPb. Бинарные соединения Mg в зависимости от природы более электроотрицательного элемента могут быть соединениями от преимущественно металлических до преимущественно ионных. Так, в ряду соединений магния с р-элементами 3-го периода [c.571]

    При переходе от магния к элементам подгруппы кальция в образовании химической связи все большую роль начинают играть /-орбитали. Так, в СаО и aFj координационное число кальция (П) равно 6 и 8 (рис. 91, а). Координационные числа бария (И) в Ва(ЫОз)а, ВаОа, Ba lj и ВаНз соответственно равны 6, 6, 9 и 11. [c.575]

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]

    Координационное число атомов в том и другом вариантах ст ктуры равно 12. Примером металла, имеющего плотнейшую кубическую упаковку, является медь (см. рис. 1.74), гекса-гона 1ьную - магний. [c.157]

    Образовавшийся плохо растворимый фторидный комплекс безводен — характерное для Ве(П) КЧ=4 достигается за счет ионов F , заполняющих координационную сферу Ве(И). Термолизом тетрафто-робериллата аммония получают безводный фторид бериллия, который, как упоминалось, служит исходным веществом для магннй-термического и электролитического получения металлического бериллия  [c.36]

    Комплексные (координационные) соединения ширгжо распространены в живой и неживой природе, гфименяются в промышленности, сельском хозяйстве, науке, медицине Так, хлорофилл — это комплексное соединение магния с порфиринами, гемоглобин содержит комплекс железа(П) с порфириновыми циклами. Многочисленные минералы, как правило, представляют собой координационные соединения металлов. Значительное число лекарственных препаратов содержит комплексы металлов в качестве фармакологически активных веществ, например, инсулин (комплекс цинка), витамин В (комплекс кобальта), платинол (комплекс платины) и т. д. В широком смыс.те слова почти все соединения металлов можно считать комплексными соединешмми. [c.179]

    Закономерности строения кристаллов лантаноидов удобно проследить с помощью табл. 10. Все лантаноиды, изученные при температурах, близких к плавлению, имеют ОЦК структуру. Для прометия, эрбия и тулия надежных данных пока еще нет. У европия, расположенного в центре группы лантаноидов, ОЦК структура устойчива, по-видимому, во всей области существования твердой фазы. У остальных лантаноидов при низких температурах устойчивы фазы, имеющие плотные упаковки атомов с координационным числом 12. Лантаноиды подгруппы церия, за исключением самария и европия, при низких температурах имеют плотные упаковки атомов типа а-лантана (АВАСАВ) (Се, Рг, N(1, Рт). У церия, подобно лантану, переход от гексагональной плотной к ОЦК упаковке происходит через ГЦК упаковку атомов. а-Самарий имеет специфическую ромбоэдрическую упаковку с расположением слоев АВАВСАСВС. У лантаноидов подгруппб иттрия (Оё, ТЬ, Оу, Но, Ег, Тт и Ьи) низкотемпературная модификация имеет плотную гексагональную упаковку типа магния (АВАВ). Только у ттербия низкотемпературная фаза обладает гранецентрированной кубической упаковкой. [c.184]

    Как следует из этой схемы, для Сг(+3) характерным является координационное число 6. Оксид хрома (+3) и соответствующий гидроксид по свойствам сильно напоминают соединения алюминия AI2O3 и А1(0Н)з. В частности, при сплавлении СГ2О3 с оксидами или карбонатами щелочных металлов образуются метапроизводные Ме СгОг- Подобное же взаимодействие с производными щелочноземельных металлов, магния, железа (+2) приводит к образованию хромовых [c.451]

    Позднее были предложены формулы, в которых комплск-сообразующнм атомом является не кислород, а магний сюда относятся формулы диэфиратов с координационным числом, равным 4 (формула Мейзенгеймера) и равным 3 (формула Гесса и Рейнбольта)  [c.221]

    MgAb04 (шга не гь) — смешанный оксид магния (П) и алюминия (П1), также координационный полимер. Его кристаллы образованы тетраэдрическими Mg04 и октаэдрическими АЮе структурными еди-.—а - ницами. Аналогичны по структуре соеди- [c.282]

    В то же время ожидаемое координационное число алюминия в А1Рз должно быть равным 4 или б, а по данным рентгеноструктурного анализа оно оказалось равным 6. Каждый атом алюминия окружен октаэдрически расположенными шестью атомами фтора, и каждый атом фтора связан с двумя атомами алюминия. Кристалл MgF2 имеет структуру рутила (рис. 18.2), отвечающую ожидаемому координационному числу 6 для магния при этом каждый атом фтора связан с тремя атомами магния, а Кар имеет структуру хлорида натрия, в которой как натрий, так и фтор имеют координационное число 6. [c.517]

    Исследованием адсорбции водорода на MgO методами термодесорбции и ИК-спектроскопии показано [320], что имеется несколько пиков при температуропрограммированной десорбции водорода, причем энергия активации десорбции в наиболее характерных первых двух пиках составляет 46 и 68 кДж/моль. Предполагается, что активными центрами адсорбции служат координационно-ненасьпценные ионные пары Mg -О ", а квантовохимический расчет электронной плотности на ионах магния и кислорода при адсорбции водорода указал на гетеролитический характер диссоциации молекулы водорода при адсорбции. Это предположение подтверждено наблюдением в ИК-спектрах гидроксильных и гидридных групп, образующихся при адсорбции Н на MgO [321 ]. [c.119]


Смотреть страницы где упоминается термин Магний координационные: [c.203]    [c.477]    [c.200]    [c.123]    [c.127]    [c.247]    [c.177]    [c.380]    [c.257]    [c.146]    [c.338]    [c.363]    [c.467]    [c.647]    [c.930]    [c.150]    [c.620]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.334 , c.336 ]




ПОИСК







© 2025 chem21.info Реклама на сайте