Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные потенциалы в неводных средах

    Значительная часть работ, относящихся к катодному выделению металлов из неводных сред, сводится к полярографическим исследованиям на ртутном капельном электроде. Наиболее полно они представлены в библиографическом указателе по полярографии [50]. Поскольку ртуть в некоторых органических растворителях окисляется при потенциалах, предшествующих потенциалам восстановления ионов отдельных металлов (например, Ag+ в ДМСО, ДМФ [796]), дальнейшим расширением границ полярографических исследований явились вольт-амперные измерения на твердых, преимущественно платиновых, электродах [796, 681, 766, 689, 588, 892, 1118, 814], гораздо реже — на электродах типа Ме/Ме -1- [681, 479, 162, 609, 642]. Особого внимания заслуживает применение вращающегося платинового электрода, который обладает высокой чувствительностью, сочетающейся с иными преимуществами твердых электродов (отсутствие колебаний силы тока, обусловленных капанием на ртутном капельном электроде, емкостного тока). На вращающихся платиновых электродах целесообразно исследовать растворы деполяризаторов, в которых вследствие низких коэффициентов диффузии весьма малы диффу знойные токи, так как здесь предельный ток во много раз больше, чем на ртутном электроде. На таком электроде редко появляются максимумы. Оптимальными условиями работы вращающегося платинового электрода являются строго постоянные температура и скорость вращения электрода, обеспечивающие постоянство диффузионного тока и низкие концентрации деполяризатора, позволяющие избежать изменения электродной поверхности из-за осаждения металлов. Большое значение имеет форма электрода [433]. При вольт-амперных измерениях на твердых электродах довольно часто используют скорости изменения потенциала — гораздо большие, чем в классической полярографии на ртутном капельном электроде. Широкое распространение в последнее время [c.73]


    Поскольку растворимость ионофоров в неводных растворителях, как и многие иные свойства неводных композиций, определяется энергией сольватации и диэлектрической проницаемостью, многое из того, что было сказано о влиянии смешанного растворителя на силу электролитов, может быть перенесено и на растворимость электролитов в неводных средах. Наконец, изменение состава смешанного растворителя оказывает существенное влияние и на электродные процессы. Изменяя характер специфической сольватации и диэлектрическую проницаемость, можно существенно изменить величину стандартного электродного потенциала и рас- [c.131]

    Теория. Как следует из уравнения (1Х.З ), потенциал водородного электрода является формальной мерой активности протона в растворе. Электрод дает воспроизводимые значения потенциалов в некоторых неводных средах, например, смеси уксусной кислоты и ее ангидрида [9], и во многих водных и смещанных растворах. Вероятно, растворитель не участвует в электродной реакции. Предполагается, что водородный электрод обратим относительно протонов независимо от того, действительно ли свободные протоны присутствуют в данной среде в заметном количестве. Устойчивость и воспроизводимость потенциалов водородного электрода подтверждает, что активность протона ан имеет в этих средах определенное значение [10]. Не существенно, являются ли протоны, участвующие в равновесном процессе на поверхности электрода, свободными или они находятся в сочетании с частицами растворенного вещества или растворителя, от которых они легко отделяются. [c.213]

    Хотелось бы знать, можно ли приготовить в подходящих неводных растворителях другие катионы низшей степени окисления, неизвестные до сих пор в растворе. Среди редкоземельных известны твердые соединения европия (П1), иттербия (III), самария (III), тулия (III) и неодима (III). Полярографическое восстановление трех первых соединений в водном растворе дает сначала двухвалентные ионы, а затем амальгаму. Все три амальгамы, иттербий (II) и самарий (II) быстро окисляются водой, и в водном растворе их выделить нельзя. При полярографическом восстановлении тулия (III) и неодима (III) в водном растворе тулий (II) или неодим (II) не образуется, даже мгновенно. Поскольку при переходе ионов от воды к растворителю с меньшей сольватирующей способностью сдвиг в положительном направлении формального электродного потенциала для пары III/II много больше, чем для пары II/0(Hg), как и следовало ожидать, при полярографическом восстановлении тулия (III) и неодима(III) в растворителях с меньшей сольватирующей способностью, чем у воды, появляются признаки образования тулия (II) и неодима (II) в таких растворителях. Однако в ацетонитриле [5, 130] и бензонитриле [130] как тулий(III), так и неодим (III) дает лишь одну трехэлектронную волну восстановления, показывающую, что в присутствии ртути тулий (II) и неодим (II) будут диспропорционировать до трехвалентного иона и амальгамы даже в этих растворителях. [c.170]


    В гл. 8 было показано, что по циклу Борна—Габера, предположив многостадийность электродной реакции, можно вычислить энергию каждой из стадий. Если пренебречь в таком расчете энтропийными членами, то от растворителя к растворителю будет изменяться только энергия сольватации. Если эта величина известна, то в первом приближении можно найти значения электродного потенциала. Однако для неводных сред энергии сольватации фактически еще не определены. [c.541]

    Возможность разряда металлов из водных растворов затрудняется по мере увеличения атомного номера в одной и той же группе периодической системы, хотя нормальный электродный потенциал становится положительнее. Так, хром выделяется из водных растворов самостоятельно с выходом по току до 25%, в то время как вольфрам и молибден осаждаются лишь в виде сплавов. Выход по току при осаждении марганца составляет до 90%, в то время как выход по току при осаждении рения может быть равен 28%. Электроосаждение из водных растворов переходного металла марганца, имеющего весьма электроотрицательный электродный потенциал, связано с заполнением -электронных уровней электронами с непараллельными спинами и это обусловливает относительно невысокое перенапряжение при его выделении. Нормальные потенциалы тантала, ниобия и ванадия близки к потенциалу марганца и цинка, однако из водных растворов осадить их в заметных количествах не удалось. Это обусловливается более высоким перенапряжением разряда этих металлов и низким перенапряжением водорода на них. Получение.покрытий переходными металлами III—V групп возможно из неводных сред или расплавленных солей, о чем будет сказано в следующих главах. [c.80]

    Существенной особенностью электроосаждения металлов из неводных сред является то обстоятельство, что стандартный электродный потенциал металла зависит от растворителя, как это можно видеть в табл. 5. [c.89]

    При измерении 1/2 волн в неводных средах часто пользуются выносным водным каломельным электродом. Оказалось, что если отсутствует специфическое взаимодействие деполяризатора с растворителем и механизм электродного процесса не меняется при изменении природы среды, то Еу волны одного и того же деполяризатора почти одинаковы в разных растворителях [118]. Это позволяет считать, что диффузионный скачок потенциала на границе [c.63]

    ДЛЯ неводных систем недостает многих необходимых сведений, и поэтому приходится довольствоваться качественными выводами. Стандартный электродный потенциал можно рассчитать довольно точно с помощью первичного эффекта среды. Так как стандартная э. д. с. ячейки определяется лишь по взаимодействию ион — растворитель, необходимо учитывать только первичный эффект среды. Расчет этого эффекта можно сделать по уравнению Борна, хотя и есть некоторые сомнения в его пригодности. Энергию, необходимую для переноса иона радиуса г из раствора с диэлектрической проницаемостью б1 в другой растворитель с диэлектрической проницаемостью 62, можно определить по формуле  [c.357]

    К сожалению, многообразие взаимодействий, имеющих место в различных растворителях, затрудняет выявление общих закономерностей в свойствах, и теория электродных процессов в неводных средах еще не разработана до настоящего времени. Попытки выразить влияние растворителя на электродный потенциал металла через диэлектрическую проницаемость растворителя и другие факторы электростатического характера пока не приводят к удовлетворительным результатам. [c.600]

    Данный электрод применяют в качестве вспомогательного в средах, содержащих хлорид-ионы, в частности в неводных и смешанных растворителях. Он характеризуется хорошей воспроизводимостью и устойчивостью потенциала. Электродная реакция  [c.36]

    Именно свободная энергия переноса ионов водорода из воды в неводные и смешанные растворители, а также связанный с ней эффект среды у являются ключевыми пунктами в установлении единой шкалы электродных потенциалов, основанной на водородной шкале в водном растворителе. Чтобы выразить потенциал полуреакции (41) в водородной шкале в воде, вместо изменения свободной энергии реакции (42) требуется изменение энергии ДС° в реакции [c.38]

    Для каждого типа неводного электролита (неводные растворы, расплавы, твердые электролиты) можно выбрать подходящие электроды сравнения, измерить потенциалы других электродов и составить таблицы электродных потенциалов. Как правило, последовательность реакций (электродов) в ряду сильно не изменяется как в водной, так и в других средах сильный восстановитель, например литий, будет иметь более отрицательный потенциал, чем более слабый восстановитель, например медь. [c.67]

    Известны экспериментальные и теоретические методы расчета электродных потенциалов [770]. Однако сравнение электродных потенциалов в различных средах связано с рядом непреодолимых трудностей. Эти трудности в первую очередь определяются выбором электрода сравнения, которым в водных растворах является стандартный водородный электрод, приравниваемый к нулю. В неводных растворах наблюдается значительный сдвиг потенциала водорода в зависимости от природы растворителя. [c.233]


    Однако следует отметить, что с изменением среды (pa TBopHj-теля), в которой находится электрод, изменяется и стандартный электродный потенциал. Поэтому сведения, приведенные в 12, табл. 79], непригодны для сравнения химических свойств веществ в неводных средах (органических растворителях, расплавах), [c.237]

    Выбор Э. с. зависит от условий измерения электродных потенциалов. В неводных средах можно применять и водные Э. с., но при этом следует учитывать диффуз. потенциал на границе между водным и неводным р-рами. В расплавах в кач-ве Э. с. можно использ. металлы, потенциалы к-рых не меняются во времени (напр., Ag). [c.698]

    Осложняющим фактором при восстановленнн ор1анических соединений в неводных средах является образование ионных пар между отрицательно заряженной частицей, образующейся в результате электродного процесса, и катионом электролита фона AI+ (уравнения 3.54, 3 55), Сдвиг потенциала полуволны вследствие такой ассоциации описыаается измененным уравнением Нернста (3.56) [105 . [c.122]

    Применимость стеклянных электродов в неводных растворах может быть ограничена неполноценной функцией и иногда высоким сопротивлением среды. Несмотря на эти трудности, стеклянные электроды оказались удовлетворительно функционирующими в органических растворителях с диэлектрической проницаемостью, равной 2,3 [131]. Ликкен [132, 133] успешно применил стеклянные электроды в бензин-изопропиловом спиртовом растворителе после насыщения стеклянной поверхности водой. Промывание электрода водой после погружения его в неводную среду может полностью восстановить электродную функцию. В случае употребления стеклянных электродов в этанол-водных смесях, содержащих менее 90 вес.% этанола, трудности невелики [65, 134]. При высоких концентрациях этанола или ацетона в воде обнаруживаются некоторые сокращения линейного участка кривых Е—pH, а также и изменения потенциала во времени. В 40% растворе спирта теоретический наклон сохраняется при pH 3—9,5, но в 50 и 70%-ном спирте отклонения наступают при pH 7 и 8, соответственно [105, 106]. В метаноле потенциал стеклянного электрода стабилен [135]. Более того, стеклянный электрод обладает удовлетворительной водородной функцией в перекиси водорода [136], а также функцией иона дейтерия в тяжелой воде [137, 138]. Он способен также показывать правильные результаты в муравьиной [139], в уксусной [ПО, 140] кислотах, хотя в первой наблюдается постепенная потеря функции. Практически удовлетворительные результаты получаются в ацетонитриле [142, 143] , хинолине и пиридине [145], а также в диметилформамиде [146]. [c.287]

    Литий, который используют как вещество отрицательного электрода, представляет собой самый легкий среди твердых элементов металл серебристо-белого цвета с удельной массой 0,534, температурой плавления 186°С и температурой кипения 1609°С. По химическим свойствам он больше похож на магний и кальщй, чем на натрий и другие щелочные металлы. Однако при нормальной температуре литий, реагируя с водой, легко превращается в гидроксид. По этой причине необходимо использовать неводные электролиты типа органических. Реакция разряда протекает по уравнению ЬI Ь + е и сопровождается переходом лития в раствор. Стандартный электродный потенциал лития самый низкий среди металлов (3,045 В), а допустимая токовая нагрузка на единицу массы самая высокая (3,83 А - ч/г). По этим причинам литий можно считать наилучшим активным веществом отрицательного электрода для элементов, с высокой плотностью энергии. При изготовлении литиевого электрода используют простой способ, в соответствии с которым металлический литий в виде пластины наносят на никелевый собирающий электрод. [c.136]

    Ч. I посвящена обшрм вопросам аналитической химии т. 1, 1959 — методы аналитической химии, ошибки анализа, точность и оценка данных эксперимента, отбор пробы, равновесие и термодинамика реакций, электродный потенциал, сила кислот и оснований, равновесие в неводных средах, комплексообразование, растворимость и образование осадков и другие вопросы, имеющие теоретическое и прикладное значение т. 2, 1961 — неорганические реагенты для отделения, окислительно-восстановительные реагенты, реагенты, применяемые для комплексообразования, экстрагирования и колориметрии т. 3, 1961 — экстракция, осаждение и кристаллизация, теория соосаждения, методы хроматографического разделения т. 4, 1963 — электрохимические методы анализа и методы анализа, основанные на применении магнитного поля т. 5, 1964 — оптические методы анализа т. 6, [c.12]

    Ряд исследователей представили информацию о щелочной ошибке стеклянных электродов в неводных средах. Так, Вегман и др. [85] изучали щелочную ошибку в уксусной кислоте. Харлоу [86] исследовал влияние малых количеств иона калия в титранте (0,25 М. гидроксид тетрабутиламмония) на электродную функцию в смеси 80% пиридина и 20% изопропанола и обнаружил уменьшение чувствительности электрода к изменениям кислотности. Величина эффекта изменялась от электрода к электроду и зависела от состава стекла и предварительной его обработки. Систематическое изучение щелочной ошибки стеклянного электрода в изопропаноле проводили Карлберг и Юханссон [87], которые сравнивали поведение стеклянного и водородного электродов в изопропаноле. Ими установлено, что стеклянные электроды, показывающие малую щелочную ошибку в воде, в изопропаноле ведут себя идеально. Двухвалентные ионы вызывают меньшие отклонения потенциала от его идеального значения, чем одновалентные. При перенесении электродов из щелочных в кислотные растворы наблюдается гистерезис, но это явление не отмечается при обратном перенесении. Таким образом, титрование следует проводить от кислотных к щелочным растворам, а не наоборот. [c.296]

    Для сравнения электродных потенциалов в различных раство-рителях нужно относить все потенциалы к одному электроду сравнения. В водных растворах последним обычно является водородный электрод, стандартный потенциал которого в воде условно принят за нуль при всех температурах. Такой выбор не может считаться удачным для неводных сред, поскольку протон характеризуется весьма специфическим взаимодействием с растворителем и потенциал водородного электрода будет наиболее сильно изменяться при переходе от одного растворителя к другому. Кроме того, возникает дополнительная трудность, заключающаяся в необходимости оперировать с активностью ионов Н+ в неводных растворах, значения которой во многих растворителях оценить можно лищь с большей или меньшей степенью неопределенности (см. раздел IX. 6). [c.279]

    В неводных р-рителях С. п. также определяют по отношению к потенциалу водородного электрода для каждого отдельного р-рителя. Ведется поиск стандартного электрода, потенциал к-рого можно было бы считать практически не зависящим от природы р-рителя, что позволило бы создать единую шкалу электродных потенциалов. В качестве таких электродов предложены системы рубидий/ион рубидия, ферроцен/ферроциний-катион и бис(дифенил)хром(1)/ /бис(дифенил)хром(0), потенциалы к-рых из-за большого размера иоиов и соотв. малой их сольватации незначительно (по сравнению с потенциалом водородного электрода) зависят от природы р-рителя. Последние два электрода рекомендоЬаны в 1984 ИЮПАК в качестве электродов сравнения в неводных орг. средах. [c.415]

    Методы нахождения значений стандартных электродных потенциалов, не содержащих ошибок за счет появления диффузионного потенциала, описаны в гл. XII. Влчек [А, V1 с е к, 1951] распространил представления о практическом совпадении нормальных потенциалов ионов рубидия и цезия во всех неводных растворителях на область полярографических исследований. Однако, поскольку во многих средах очень трудно определить значение потенциалов полуволн ионов рубидия и цезия (вследствие электрохимической неустойчивости растворителей), то в качестве потенциала сравнения Влчек предложил использовать величину потенциала полуволны восстановления иона калия, число сольватации которого в большинстве растворителей мало. [c.303]


Смотреть страницы где упоминается термин Электродные потенциалы в неводных средах: [c.178]    [c.206]    [c.90]    [c.82]    [c.65]    [c.209]    [c.209]   
Смотреть главы в:

Методы измерения в электрохимии Том1 -> Электродные потенциалы в неводных средах


Теоретическая неорганическая химия Издание 3 (1976) -- [ c.509 , c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электрода электродный в неводных средах

Потенциал электродный потенциал

Потенциалы в неводных средах

Стандартные электродные потенциалы в неводных средах

Электродный потенциал

неводных средах



© 2025 chem21.info Реклама на сайте