Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы в неводных средах

    Химический потенциал вещества в неводной среде, отнесенный к единому стандартному состоянию, выразится уравнением [c.64]

    Прежде всего это относится к щелочным и щелочноземельным металлам, которые восстанавливаются на РКЭ при более отрицательных потенциалах, чем потенциал разряда ионов водорода. Их определение обычно проводят в неводных средах (ацетонитрил, [c.453]


    Наиболее эффективный метод выбора индикаторов для неводных сред показан на рис. И. На этом рисунке полезные области индикаторов в ниридине приведены как функции потенциалов растворов. Как и при изучении кислотностей в пиридине (стр. 15), в этом случае потенциал [c.33]

    Для прецизионных измерений необходимо использовать трехэлектродную ячейку. Полный литературный обзор по электродам сравнения в неводных средах в целом и в отдельных растворителях составлен в работах [1116, 1224, 949, 807, 1275, 1153]. В качестве электродов сравнения используются различные электроды первого и второго рода как в исследуемом растворе, так и выносные. При исследованиях катодного выделения металлов наибольшее распространение здесь получили электроды — водный насыщенный каломельный и серебряный (первого и второго рода) — выносной, а также в исследуемой среде. Применение выносных электродов особенно целесообразно при сопоставлении поведения различных деполяризаторов в одном растворителе. Возникновение -скачка потенциала в месте соприкосновения водного и неводного растворов препятствует количественному сопоставлению поведения [c.71]

    Значительная часть работ, относящихся к катодному выделению металлов из неводных сред, сводится к полярографическим исследованиям на ртутном капельном электроде. Наиболее полно они представлены в библиографическом указателе по полярографии [50]. Поскольку ртуть в некоторых органических растворителях окисляется при потенциалах, предшествующих потенциалам восстановления ионов отдельных металлов (например, Ag+ в ДМСО, ДМФ [796]), дальнейшим расширением границ полярографических исследований явились вольт-амперные измерения на твердых, преимущественно платиновых, электродах [796, 681, 766, 689, 588, 892, 1118, 814], гораздо реже — на электродах типа Ме/Ме -1- [681, 479, 162, 609, 642]. Особого внимания заслуживает применение вращающегося платинового электрода, который обладает высокой чувствительностью, сочетающейся с иными преимуществами твердых электродов (отсутствие колебаний силы тока, обусловленных капанием на ртутном капельном электроде, емкостного тока). На вращающихся платиновых электродах целесообразно исследовать растворы деполяризаторов, в которых вследствие низких коэффициентов диффузии весьма малы диффу знойные токи, так как здесь предельный ток во много раз больше, чем на ртутном электроде. На таком электроде редко появляются максимумы. Оптимальными условиями работы вращающегося платинового электрода являются строго постоянные температура и скорость вращения электрода, обеспечивающие постоянство диффузионного тока и низкие концентрации деполяризатора, позволяющие избежать изменения электродной поверхности из-за осаждения металлов. Большое значение имеет форма электрода [433]. При вольт-амперных измерениях на твердых электродах довольно часто используют скорости изменения потенциала — гораздо большие, чем в классической полярографии на ртутном капельном электроде. Широкое распространение в последнее время [c.73]


    В большинстве работ по приложению полярографии к изучению катодного выделения металлов из неводных сред исследования ограничиваются определением значений потенциалов полуволн без учета величины контактного потенциала и коэффициента Ь в известном уравнении [c.74]

    Поскольку растворимость ионофоров в неводных растворителях, как и многие иные свойства неводных композиций, определяется энергией сольватации и диэлектрической проницаемостью, многое из того, что было сказано о влиянии смешанного растворителя на силу электролитов, может быть перенесено и на растворимость электролитов в неводных средах. Наконец, изменение состава смешанного растворителя оказывает существенное влияние и на электродные процессы. Изменяя характер специфической сольватации и диэлектрическую проницаемость, можно существенно изменить величину стандартного электродного потенциала и рас- [c.131]

    В ряде случаев, например в некоторых неводных средах, диффузионный потенциал каломельного электрода резко воз- [c.133]

    Теория. Как следует из уравнения (1Х.З ), потенциал водородного электрода является формальной мерой активности протона в растворе. Электрод дает воспроизводимые значения потенциалов в некоторых неводных средах, например, смеси уксусной кислоты и ее ангидрида [9], и во многих водных и смещанных растворах. Вероятно, растворитель не участвует в электродной реакции. Предполагается, что водородный электрод обратим относительно протонов независимо от того, действительно ли свободные протоны присутствуют в данной среде в заметном количестве. Устойчивость и воспроизводимость потенциалов водородного электрода подтверждает, что активность протона ан имеет в этих средах определенное значение [10]. Не существенно, являются ли протоны, участвующие в равновесном процессе на поверхности электрода, свободными или они находятся в сочетании с частицами растворенного вещества или растворителя, от которых они легко отделяются. [c.213]

    Рассмотрим изменение энергии ионов кислот при переходе из одного-растворителя в другой. Это изменение энергии также может быть выражено с помощью lg Уо- Величины lg уо равны разности химических потенциалов ионов кислот в неводной среде и в воде, деленной на коэффициент 2,3 ЯТ. Если других изменений нет, то изменение химических потенциалов определяется изменением изобарного потенциала. [c.222]

    Испытания автотитратора АТП-735 м с дозатором Д-722 проводились на наиболее распространенных в аналитической практике примерах кислотно-основного и окислительно-восстановительного титрования в водной и неводных средах. Во всех случаях электродом сравнения служил насыщенный каломельный полуэлемент кислотно-основные титрования проводились со стеклянным, а окислительно-восстановительные — с платиновым электродом, входящими в комплект к потенциометру ЛП-58. При титровании до потенциалов, лежащих в области максимального их изменения, оператор может включить блок опережения, который в пределах 100—О мв до заданного потенциала автоматически включает блок порционного дозирования (0,02 мл титранта через 15—20 сек). [c.287]

    Гайек в своем труде (см. ссылку 90) ставит под сомнение важность значения зета-потенциала для неводной среды. Он определил подвижность суспензий углерода в керосине и цетане (нормальном гексадекане) как в присутствии, так и в отсутствие агентов, способствующих сохранению взвешенного состояния. В качестве таких агентов он пользовался рядом поверхностноактивных средств. Гайеку удалось установить, что в некоторых случаях частицы оказались положительно заряженными, в других случаях — обладающими отрицательным зарядом, а в третьих случаях — нейтральными. Он наблюдал также случаи постоянства подвижности и, наоборот, случаи изменчивости таковой. Однако ему не удалось установить явно выраженной связи между подвижностью частиц и устойчивостью углеродной суспензии. На основании этого он пришел к заключению, что создание для частиц углерода условий, обеспечивающих их нахождение в нефтяном растворителе во взвешенном состоянии, не зависит в сколько-нибудь значительной степени от заряда, которым обладают частицы. Такой вывод, казалось бы, противоречит открытиям Стёбблбайна (см. ссылку 91). Однако последний добавлял к своим растворам ацетон, с целью увеличения проводимости. Возможно, что в таком случае уравнение Гельмгольца-Смолуховского сохраняет овою силу. [c.101]

    Однако следует отметить, что с изменением среды (pa TBopHj-теля), в которой находится электрод, изменяется и стандартный электродный потенциал. Поэтому сведения, приведенные в 12, табл. 79], непригодны для сравнения химических свойств веществ в неводных средах (органических растворителях, расплавах), [c.237]

    Очень интересен и важен вопрос об исследовании потенциалов течения в неводных средах в связи с взрывоопасностью при хранении, перекачке и транспортировке жидкого топлива. Он относится к довольно старой проблеме так называемого статического электричества, которая до последнего времени изучалась технологами и физиками. Лишь недавно к исследованию условий возникновения взрывов и пожаров при транспортировке жидкого топлива подключились физико-химики и коллоидники. Это оказалось весьма полезным, так как источником образования высоких разностей потенциалов в технических жидких углеводородах оказался потенциал течения. [c.9]


    В другом способе определения pH в неводной среде используют гу же основную ячейку, которую применяли для водных растворов, включая каломельный электрод сравнения с водным раствором КС1. Если для данного растворителя применены водные стандартные растворы, то может быть получен ряд величин, которые дадут оценку, чему-то , что можно лишь смутно связать с кислотностью. Если система представляет собой смешанный растворитель, содержащий воду, или водоподобный растворитель, то о системе можно узнать достаточно, чтобы связать полученные величины с величинами концентрации водородных ионов посредством калибровочной кривой. Однако вследствие того, что величина потенциала в месте контакта жидкостей меняется от растворителя к растворителю, очевидно, что нельзя сравнивать величины pH в одном растворителе с величинами pH в другом. Например, если рН-метр дал показание 5,0 для определенного раствора в смеси этанол — вода и то же самое показание для раствора в смеси метанол — вода, причем в обоих случях был применен один и тот же стандартный раствор, нельзя делать вывод, что в обоих растворах активность водородного иона одинакова. На самом деле между ними не будет никакого сходства, прежде всего потому, что на границе между растворителем этанол — вода и насыщенным водным раствором КС1 каломельного электрода и на границе между растворителем метанол—вода и водным раствором КС1 будут совсем разные потенциалы. [c.379]

    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. Величина эквивалентной электропроводности зависит также от амплитуды и частоты приложенного электрического поля. Особенно заметно это проявляется в растворах сильных электролитов, где на перемещение ионов оказывает влияние окружающая противоионная атмосфера. При высоком напряжении ион движется значительно быстрее, чем образуется ионная атмосфера, и поэтому отсутствуют, катафоретиче-ские и релаксационные эффекты. Электропроводность растворов в этих условиях резко возрастает. Релаксационное торможение снижается, кроме того, при повышенных частотах (эффект Дебая—Фаль-кенгагена). В растворах слабых электролитов электропроводность также растет с увеличением градиента поля, однако природа этого явления связана с изменением равновесия диссоциации. При высоком градиенте потенциала равновесие сдвигается в сторону образования ионов. [c.225]

    Титрование в неводной среде позволяет, дифференцировать шесть групп основных азотистых соединений первичный, вторичный и третичный алифатические амины (сильные основм-. ния) и первичные, вторичные и третичные ароматические амины (слабые основания). Для этого применялась следующая методика. После удаления аммиака титрованием того же образца в нитробензоле [231 определяли содержание алифатических и ароматических аминов. Обычно первые присутствовали лишь в небольп ом количестве. В случае присутствия 5, 6, 7, 8-тетрагидрохинолина. его можно было определять тем же титрованием, так как он дает дополнительную ступень потенциала на кривой титрования между другими двумя соединениями. Сумму вторичных и третичных аминов определяли в метилизобутилкетоне [25] после связывания первичных аминов салициловым альдегидом 241. Третичные амины определяли в том же растворителе после превращения первичных и вторичных в неосновные соединения действием уксусцого ангидрида [24, 26]. [c.137]

    Выбор Э. с. зависит от условий измерения электродных потенциалов. В неводных средах можно применять и водные Э. с., но при этом следует учитывать диффуз. потенциал на границе между водным и неводным р-рами. В расплавах в кач-ве Э. с. можно использ. металлы, потенциалы к-рых не меняются во времени (напр., Ag). [c.698]

    Термодинамика и кинетика окислит.-восстановит. р-ций, в к-рых участвуют биологически активные соед, изучаются вольтамперометрич. методами с использованием капающего (обычно ртутного) или стационарного электрода. Эти методы позволяют определить число электронов, вовлеченных в р-цию при каждом значении потенциала, а также обнаружить неустойчивые промежут. соединения, в т.ч. короткоживущие радикалы, к-рые не удается зарегистрировать методом ЭПР. Электрохим. методы имеют широкую область применения и позволяют изучать тонкости механизма р-ций. Они пригодны для проведения уникальных синтезов и решения сложных аналит. задач, т. к. чувствительность импульсной полярографии позволяет, напр., обнаружить 10 М электрохимически активного в-ва. Возможность применения электрохим. методов для решения упомянутых проблем основана на сходстве электрохим. и биол. окислит.-восстановит. р-ций оба типа являются гетерогенными (первые осуществляются на пов-сти электрода, вторые-на границе фермент-р-р), идут в одном интервале pH и в р-рах той же ионной силы, протекают в неводных средах и в одинаковом интервале т-р, включают стадию ориентации субстрата. Электрохим. методы позволяют получать информацию об окислит.-восстановит. потенциалах, числе электронов, механизме р-ций с участием азотсодержащих гетероциклич. соед. (пурины, пиримидины, порфирины и т. п.). Емкостные измерения дают важные сведения об адсорбционных св-вах низкомол. и высокомол. биологически активных соед. (нуклеотиды, белки, нуклеиновые к-ты). [c.292]

    При измерениях в неводных средах в принципе можно применять водные Э. с., если создать воспроизводимую фа-HHity водного и неводного р-ров и учитывать возникающий на этой фанице диффузионный потенциал. Часто в неводных средах используют Э. с. на основе серебра в р-ре его соли. [c.426]

    Осложняющим фактором при восстановленнн ор1анических соединений в неводных средах является образование ионных пар между отрицательно заряженной частицей, образующейся в результате электродного процесса, и катионом электролита фона AI+ (уравнения 3.54, 3 55), Сдвиг потенциала полуволны вследствие такой ассоциации описыаается измененным уравнением Нернста (3.56) [105 . [c.122]

    Восстановление с заменой галогена иа водород может протекать в очень разных условиях как на ртути, так и иа платине, как в водных, так и в неводных средах. Донорами протонов могут служить и такие растворители, как диметилформамид или ацетонитрил, а также катионы тетраалкиламмония Если возможны альтернативные пути восстановления (образование гндродимера или металлорганических соединении), то для осуществления реакции замены галогена на водород требуется наиболее отрицательный потенциал. [c.283]

    К обычным требованиям, предъявляемым к электроду сравнения в водных растворах,— стабильности потенциала во времени, воз-аращению к исходному состоянию после поляризации и подчинению уравнению Нернста — при работе в неводных средах добавляется еще несколько, среди которых важнейшее — отсутствие взаимодействия (комплексообразования) с растворителем и минимальная растворимость (для электродов второго рода). Универсального электрода сравнения, подобного насыщенному каломельному электроду для водных сред, в неводных растворах нет [705]. [c.71]

    Кривые потенциометрического титрования, представленные на эис. 11.7, иллюстрируют применение этого метода для титрования смеси триэгиламнна и пиридина. Из вида кривой 1 можно сделать вывод, что вода является удобной средой для титрования сильных аминов в присутствии слабых аминов, но не наоборот. Так как нейтральные соли увеличивают скачок потенциала при титровании слабых аминов, не оказывая влияния на дифференцирующую способность воды, то концентрированные растворы солей пригодны для анализа смесей слабых и сильных аминов. Титрование такого рода можно осуществить также в недиссоциирующих растворителях, например в ацетонитриле [5] и метилизобутилкетоне [6]. Этими методами в большинстве случаев удается получить сравнимые результаты. Если в неводных средах амины образуют нерастворимые соли, титрование в концентрированных водных растворах солей может иметь определенное преимущество. [c.416]

    Первые работы о применении ртутного капельного электрода при электролизе расплавов опубликовали в 1948 г. Нахтриб и Штейнберг [64]. В отличие от большинства неводных сред расплавы обладают хорошей проводимостью, поэтому падение потенциала в электролизере iR в этих условиях практически не влияет на полярографические кривые. [c.443]

    Однако задачу определения ионов С1 и Вг при совместном присутствии можно решить еще проще с применением неводных сред [215]. При определении галогенов в метиловом спирте с использованием платинового катода и Ag/AgX-анода оптимальные значения потенциала рабочего электрода для выделения ионов С1 , Вг и J соответственно равны +0,20, 0,00 и —0,05 в относительно насыщ. к. э. Средняя ошибка определения для каждого компонента при анализе 18—63 мг смеси ионов С1 + Вг составляет 0,6 мг. При определениях в этиловом спирте и диоксане (или в их водных растворах) получаются менее точные результаты, чем в метиловом спирте. Этот способ позволяет наряду с галогенами (в том числе ионами J") определять также ионы SGN с ошиб- [c.26]

    Вопрос о достижимом диапазоне потенциостатирования становится все более важным с ростом использования органических растворителей, расплавов солей и других неводных сред. Пределы, ограничивающие анодный и катодный потенциал при потенциостатической кулонометрии, полностью аналогичны пределам, встречающимся при амперометрии. Для большинства работ вполне достаточен диапазон потенциостатирования от +2,5 до —2,5 в, хотя выпускаются приборы, у которых этот диапазон вдвое больше. [c.26]

    Фундаментальная количественная теория устойчивости заряженных коллоидных частиц, так называемая теория ДЛВО, была развита независимо советской [35 ] и датской [3 ] школами. В этих исследованиях предполагалось, что коллоидная устойчивость достигается тогда, когда возникающий при сближении заряженных частиц потенциал отталкивания превышает потенциал присущего частицам притяжения. Электростатическая стабилизация лиофобных коллоидных дисперсий в неводных средах уже обсуждалась в терминах теории ДЛВО ранее [5]. В последние годы при использовании истощающего диализа были получены водные дисперсии коллоидных частиц полимера, практически свободные от примесей электролита [1, 36] и поэтому содержащие только на поверхности частиц ионы и противоионы. Эти латексы высокоустойчивы при всех доступных концентрациях. Действительно, Кригер [37 ] показал, что между значительно удаленными друг от друга частицами в дисперсиях низких концентраций могут возникать дальнодействующие силы отталкивания, значительно превышающие кТ. Ввиду того, что рассматриваемые водные системы являются устойчивыми, вероятно, вследствие простого кулонов-ского отталкивания, возникает вопрос, почему тот же механизм не может привести к стабилизации полимерных дисперсий в органических жидкостях. Однако причина этого положения вещей устанавливается просто. [c.28]

    Применимость стеклянных электродов в неводных растворах может быть ограничена неполноценной функцией и иногда высоким сопротивлением среды. Несмотря на эти трудности, стеклянные электроды оказались удовлетворительно функционирующими в органических растворителях с диэлектрической проницаемостью, равной 2,3 [131]. Ликкен [132, 133] успешно применил стеклянные электроды в бензин-изопропиловом спиртовом растворителе после насыщения стеклянной поверхности водой. Промывание электрода водой после погружения его в неводную среду может полностью восстановить электродную функцию. В случае употребления стеклянных электродов в этанол-водных смесях, содержащих менее 90 вес.% этанола, трудности невелики [65, 134]. При высоких концентрациях этанола или ацетона в воде обнаруживаются некоторые сокращения линейного участка кривых Е—pH, а также и изменения потенциала во времени. В 40% растворе спирта теоретический наклон сохраняется при pH 3—9,5, но в 50 и 70%-ном спирте отклонения наступают при pH 7 и 8, соответственно [105, 106]. В метаноле потенциал стеклянного электрода стабилен [135]. Более того, стеклянный электрод обладает удовлетворительной водородной функцией в перекиси водорода [136], а также функцией иона дейтерия в тяжелой воде [137, 138]. Он способен также показывать правильные результаты в муравьиной [139], в уксусной [ПО, 140] кислотах, хотя в первой наблюдается постепенная потеря функции. Практически удовлетворительные результаты получаются в ацетонитриле [142, 143] , хинолине и пиридине [145], а также в диметилформамиде [146]. [c.287]

    Потенциал полуволны, диффузионный ток, число и форма волн зависят от состава исследуемого раствора. Необходимость растворять образец в подходящем инертном растворителе, обеспечивающем достаточную электропроводность, сильно ограничивает применение полярографической методики к анализу. полимеров. За исключением относительно небольшого количества водорастворимых полимеров, измерения чаще всего проводят в смесях воды с 1,4-диоксаном, N,N-димeтилфopмaмидoм, моноалкиловыми эфирами этиленгликоля (целлозольвы), в тройных смесях вода — этанол (или метанол) — бензол или в неводных средах. Для того чтобы увеличить растворимость в смесях органических растворителей с водой, применяют аэрозоль МА и аэрозоль АУ (дигексил- и диамнлсульфосукцинат натрия), которые оказались эффективными для таких соединений, как тре/п-бутилгидроперекись [210]. Вследствие того что величина диффузионного потенциала между исследуемым раствором и электродом сравнения неизвестна, значения потенциалов включают некоторую неопределенную величину. Если в качестве анода используют слой ртути, то его потенциал изменяется в зависимости от среды и должен измеряться отдельно. Четвертичные аммониевые соли при использовании в качестве фона можно растворять в 30—85%-ном диоксане. Однако этот растворитель трудно очистить, и при стоянии он быстро образует перекиси. Четвертичные соли растворимы в этаноле, имеющем концентрацию вплоть до 80%. Целлозольвные растворители легко очищаются, не ухудшаются при хранении и растворяют достаточное количество электролита для образования проводящих растворов. Наиболее подходящими для анализа являются концентрации определяемых компонентов, равные [c.361]

    Институтом нефтехимического синтеза АН СССР и его СКБ разработан и сконструирован электронный автотитратор АТП-735 м с дозато ром Д-722, позволяющий проводить титрование до заданного потенциала (соответственно, pH) в водных и неводных средах с любыми индикаторными электродами, включая стеклянные, а также визуальное потенциометрическое титрование, автоматическое титрование с одновременной записью кривой на ленточной диаграмме и последующее нахождение потенциала любой точки кривой поддерживать окислительно-восстановительный потенциал или pH раствора на заданном уровне в течение длительного времени. Внешний вид автотитратора с дозатором показан на рис. 1, блок-схема прибора приведена на рис. 2. [c.287]


Смотреть страницы где упоминается термин Потенциалы в неводных средах: [c.487]    [c.91]    [c.118]    [c.487]    [c.140]    [c.194]    [c.206]    [c.90]    [c.260]    [c.82]    [c.426]    [c.172]    [c.302]    [c.257]    [c.121]    [c.288]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.826 , c.829 , c.830 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.826 , c.829 , c.830 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.826 , c.829 , c.830 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузионный потенциал в неводных средах

Константы диссоциации, потенциалы полунейтрализации в неводных средах и относительная шкала кислотности

Потенциал электрода электродный в неводных средах

Стандартные электродные потенциалы в неводных средах

Электродные потенциалы в неводных средах

неводных средах



© 2024 chem21.info Реклама на сайте