Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарители при применении

    Низкотемпературная абсорбция (НТА) основана на различии в растворимости компонентов газа в жидкой фазе при низких температурах и последующем выделении извлеченных компонентов в десорберах, работающих по полной схеме ректификации. Преимущество НТА перед НТР состоит в том, что разделение углеводородных газов можно осуществлять при умеренных температурах, используя в качестве источника холода, например, пропановые испарители, применение которых в НТР оказывается недостаточным, но четкость разделения компонентов газа в этом процессе ниже, чем в НТР. [c.134]


    В схеме автоматизации аммиачной холодильной установки с рассольным охлаждением (фиг. 108) для регулирования подачи жидкого аммиака в испаритель применен поплавковый регулирующий вентиль ПРВ высокого давления. Рассол из испарителя подается насосом в батареи камер через соленоидные вентили СВ, управляемые регуляторами температуры ТР. При понижении температуры воздуха в камерах до заданного нижнего предела закрываются СВ, а затем выключается рассольный насос. Насос снова включается, если в одной из камер температура повысится до верхнего предела. [c.160]

    Поплавковые регуляторы высокого давления практически не поддерживают уровня холодильного агента в испарительной системе — вентиль всегда открыт при наличии в поплавковой камере уровня холодильного агента, причем при выключении автоматизированной установки жидкость перетекает из конденсатора в испаритель. Поэтому системы с поплавковыми регулирующими вентилями высокого давления должны быть заполнены строго определенным количеством холодильного агента, обеспечивающим нормальное заполнение испарителя. Применение поплавковых регулирующих вентилей высокого давления возможно только в системах с одним испарителем. [c.238]

    Несколько облегчило обслуживание установок со схемой по первому способу подачи (рис. 6.7, б) включение теплообменника (аккумулятора). Иногда ее называют схемой с нижним расположением отделителя жидкости, поскольку его обычно устанавливают, в машинном отделении. Внутри отделителя жидкости (теплообменника) 6 находится змеевик, в который по трубопроводу / подается жидкий хладагент из охладителя или линейного ресивера. В этот же сосуд по трубе 5 направляется пар из испарительных змеевиков. Скорость пара в сосуде понижается до 0,5—0,6 м/с, так как его диаметр значительно больше диаметра трубы. Поэтому, если пар несет с собой капельки жидкости, то они должны, теряя свою скорость, отделяться от пара и накапливаться в нижней части сосуда. За счет кипения этой жидкости происходит охлаждение жидкого рабочего тела в змеевике, и тем самым осуществляется регенеративный процесс в теплообменнике. Осушенный пар из отделителя жидкости по трубе 7 засасывается компрессором. Несмотря на некоторое уменьшение опасности гидравлических ударов, на уменьшение необходимости точного дозирования подачи хладагента (поскольку кратность циркуляции может быть несколько больше единицы, а это способствует увеличению интенсивности теплообмена из-за появления влажного хода в испарителе), применение рассматриваемой схемы не устранило серьезных недостатков непосредственного охлаждения. По-прежнему осталось большое количество регулирующих вентилей возможность испарения жидкости в теплообменнике ограничена количеством теплоты, которое можно отвести от охлаждаемой в змеевике жидкости, а потому возможны и переполнение теплообменника, и влажный ход компрессора. [c.189]


    Однако перегонка нефти в одну ступень характеризуется меньшей технологической гибкостью установки, требует большей надежности в работе аппаратуры и лучшей подготовки нефти. При одноколонной схеме перегонки отмечаются более высокие потери фракций до 350 °С с мазутом —3,1 против 2,5% (масс.) на нефть по сравнению с двухколонной схемой [3]. Эти потери могут быть снижены применением одноколонной схемы с предварительным испарителем. [c.154]

    Схема трехкратного испарения по сравнению с описанными ранее схемами обеспечивает большую глубину отбора светлых нефтепродуктов и повышенную четкость ректификации при меньших приведенных затратах Так, при перегонке самотлорской нефти можно отбирать 61,2% (масс.) светлых, в том числе 4,7% (масс.) за счет вакуумного испарителя с чистотой фракций по номинальным тем пературам кипения от Я5 до 94%. Для устаиовки производительностью 12 млн. т нефти в год экономический эффект составит 3,5 млн. руб. в год. Кроме того, применение многоступенчатых схем перегонки нефти, по мнению авторов [8], обеспечит необходимую технологическую гибкость установки по ассортименту продуктов и качеству сырья, что не менее важно для такой высокопроизводительной установки АВТ. [c.160]

    Проведенное обследование позволило сделать следующие выводы и предложения 1) колонна работает с большим запасом по производительности (на 13% выше проектной) 2) четкость погоноразделения в различных сечениях колонны неодинакова хорошая в верхних сечениях и неудовлетворительная в нижних, хотя качество полученных продуктов и удовлетворяло межзаводским нормам 3) для раздельного вывода зимнего и летнего дизельных топлив необходимо в сечениях нижних секций колонны обеспечить более высокое флегмовое число 4) для обеспечения нормальных условий работы нижних секций основной колонны в испарителе следует установить ректификационные тарелки 5) давление в колонне должно быть не выше проектного, для чего необходимо увеличить конденсатор верхних продуктов колонны. Было также отмечено отсутствие на всех тарелках коррозии и следов закоксован-ности. На основании эксплуатационных данных можно заключить о работоспособности колонны с З-образными элементами и рекомендовать их для широкого применения. [c.67]

    Поверхность испарения аппарата определяется суммарной поверхностью пучков-нагревателей, расположенных в аппарате. В испарителях может быть один, два или три пучка подогревателей. Материал для изготовления испарителя выбирают в зависимости от характера среды, температуры и давления. Установлены пределы применения испарителей по температуре, которых следует строго придерживаться при выборе аппарата. Максимально допустимая температура в аппарате 400 С. [c.175]

    Для обеспечения безопасности жидкий хлор следует подавать в змеевиковые испарители сверху, что обусловливает полное испарение. При применении испарителей, исключающих подачу жидкого хлора сверху, необходимо регламентировать полный прогрев и осушку (испарение всей жидкости) испарителя через определенные промежутки времени. [c.56]

    Крайне неправильным было применение горячей воды и влажного воздуха для удаления отложений и очистки, так как влажный воздух вызывает сильную коррозию металла. При аварийном прекращении хлорирования перекрывали клапан на хлорном баллоне, а не задвижки на линии, соединяющей испаритель с реактором хлорирования, что приводило к выносу частично прохлорированного продукта в сырьевые линии, баллоны, а затем и в ловушки. [c.115]

    На стадии синтеза аммиака применяются колонны синтеза и конденсации, сепараторы, конденсаторы, испарители аммиака, подогреватели, циркуляционные компрессоры и другое оборудование. Опасность для обслуживающего персонала на стадии синтеза обусловливается взрывоопасностью горючих газов и паров аммиака при смешении их с воздухом, отравляющим действием аммиака, возможностью ожогов жидким аммиаком, применением высоких давлений и температур. [c.28]

    МПа. Этим достигается необходимый температурный перепад между теплоотдающей и охлаждающей средами без применения компрессора. На некоторых установках пары пропана, выходящие из сепаратора 20 и освобожденные от увлекаемых капель битума, являются теплоносителем для одного из испарителей. [c.65]

    П1 И упаривании агрессивных жидкостей, для которых трудно по-д( брать стойкий конструкционный материал для поверхности теплообмена. Для упаривания термически нестойких веществ находят применение пленочные испарители с падающей пленкой, которые вь[полняются в виде вертикальных кожухотрубчатых теплообменников (рнс. 101). [c.112]

    Применение ротационного испарителя (см. рис. 79) для сушки сыпучих веществ под вакуумом при нагревании сокращает время процесса в несколько раз за счет хорошего перемешивания продукта. [c.163]

    С применением схемы 2 уменьшается перепад давления в печных трубах. Пары из испарителя направляются в атмосферную колонну, поэтому не нужно устанавливать самостоятельные [c.33]


    Рис. 51 иллюстрирует эффективность применения коагулятора из проволочной сетки. Данные получены на испарителе, работающем в паре с солевым подогревателем. Вид кривой, изображенной на рис. 51, подтверждается многочисленными экспериментальными данными. [c.91]

    Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой [c.245]

    Достоинства пленочных испарителей с перемешивающим устройством обусловили их широкое применение. В настоящее время установлено в различных отраслях промышленности США 3000 пленочных выпарных аппаратов с перемешиванием. [c.124]

    На процесс накипеобразования оказывают влияние материал трубок испарителя, чистота обработки их поверхности, температура, скорость движения раствора и пр. В арсенал методов борьбы с накипью можно включить применение зернистых присадок, контактную стабилизацию, стабилизацию подкислением, применение антинакипинов, гидрофобное покрытие поверхности нагрева, умягчение исходного раствора, магнитную и ультразвуковую обработки, применение специальных конструкций аппаратов и др. [c.14]

    Проявляется тенденция к созданию стандартной аппаратуры для перегонки, в том числе циркуляционных испарителей и сборных конструкций из стеклянных приставок и кубов, выполненных из других материалов. Эта тенденция распространяется также и на автоматизированные пилотные установки непрерывного действия с электромагнитными делителями флегмы, регуляторами уровня и расхода (рис. 142). Применением различных вентилей из стекла можно значительно упростить обслуживание подобных установок. Такие вентили подробно описаны в разд. 7.2.1. [c.213]

    Тетерь наиболее перспективны методы, основанные на применении 50з. Для сульфирования парами ЗОд, разбавленными воздухом, технологическая схема не отличается от рассмотренной раньше для сульфатирования спиртов. Для сульфирования ЗОз в растворе сернистого ангидрида неполная схема процесса изображена на рис. 97. Это производство обычно комбинируют с частичным окислением ЗОг в ЗОз техническим кислородом в блоке 1. Продукты после охлаждения и конденсации в холодильнике 2 собирают в сборнике 3 в виде 10—15%-ного раствора ЗОз в жидком ЗОг. Этот раствор, а также раствор алкилароматического углеводорода в жидком ЗОа вводят на тарелку (стакан) реактора 4 он перетекает на стенку корпуса, и там в стекающей вниз пленке реакция завершается. Жидкость, выходящая из реактора, еще содержит 5—7% ЗОг, и для удаления последнего ее подогревают и направляют в вакуумный испаритель 5, после чего она стекает в сборник 7 и поступает на дальнейшие стадии переработки (нейтрализация, смешение, сушка, расфасовка), которые выполняют аналогично схеме рис. 94. Газообразный ЗОа с верха реактора и испарителя возвращают в блок /. [c.335]

    Применяемая в химических, нефтехимических и родственных им производствах теплообменная аппаратура разнообразна как по своему функциональному назначению, так и по конструктивному исполнению. В химической технологии нашли широкое применение теплообменники для регенерации тепла жидких и газообразных сред, холодильники, предназначенные для охлажде ния среды каким-либо хладагентом, конденсаторы, работающие под избыточным давлением и в вакууме, и предназначенные для конденсации чистых паров и парогазовых смесей, дефлегматоры, применяемые для частичного выделения жидкой фазы из паровой или парогазовой смеси, испарители с паровым пространством и без него, используемые для испарения среды при ее кипении, и т. д. [c.335]

    К теплообменным устройствам и аппаратам относят всевозможные генераторы теплоты (котлы), собственно нагреватели одной среды за счет другой (теплообменники), охладители продуктов с применением хладагентов (холодильники), испарители жидкостей из смеси, конденсаторы паров с получением конденсата и некоторые другие теплообменные системы, имеющие специфическое энергетическое назначение (экономайзеры, калориферы, воздухонагреватели и т. д.). [c.148]

    Несмотря на некоторое уменьшение опасности гидравлических ударов, на уменьшение необходимости точного дозирования подачи рабочего тела, поскольку кратность циркуляции может быть несколько больше единицы, а это способствует увеличению интенсивности теплообмена из-за появ.пения влажного хода в испарителе, применение рассматриваемой схемы не устранило серьезных недостатков непосредственного охлаждения. По-прежнему осталось большое количество регулирующих вентилей возможность испарения жидкости в теплообменнике ограничена количеством тепла, какое можно отвести от охлаждаемой в змеевике жидкости, а потому возможны переполнение теплообменника и влажный ход компрессора. [c.201]

    При изготовлении деталей машин в химическом машиностроении наиболее трудоемкий и сложный процесс — обработка отверстий. Этот процесс, как правило, включает три характерные операции сверление, развертывание и нарезание резьбы. Усовершенствование каждой из этих операций имеет свои особенности доработки конструкции режущего инструмента или кинематики процесса резания. Одной из наиболте массовых операций является сверление отверстий в трубных решетках теплообменников, конденсаторов и испарителей. Применение труднообрабатываемых материалов делает эту операцию неустойчивой, вызывает быстрый износ инструмента. Например, при сверлении в трубных решетках толщиной 40 мм из коррозионностойкой стали 12Х18Н10Т отверстий диаметром 25,5 мм стандартными спиральными сверлами из быстрорежущей стали Р6М5 стойкость инструмента составляет в среднем два-три десятка отверстий, что не позволяет осуществить автоматизацию сверлильных операций и роботизацию изготовления трубных решеток. [c.68]

    Приведенное сравнение в практике приводит к некоторым про тиворечиям. Классен производил опыты по испарению жидкостей в вакуумном испарителе с применением в качестве нагревателя змеевика, обогреваемого перегретым паром. Он установил, что коэффициент теплоотдачи при использовании перегретого пара снижается. [c.92]

    Применение компрессии вторичного пара дает возмож-ность использовать теплоту испарения вторичного пара, которая в противном случае была бы отдана охлаждающей воде в конденсаторе. При этом также экономится соответствующее количество охлаждающей воды, подводимой к конденсатору, что часто является весьма важным. Ниже дано сравнение потребления свежего пара и охлаждающей воды, отнесенных на 1000 кг испаряемой воды, в одноступенчатом испарителе без компрессии и с пароструйной комиреосией. При этом предполагается, что давление свежего пара равно 1,5 ата. [c.280]

    Наиболее широкое применение в промышленности находят роторные пленочные испарители, которые благодаря большой эффективности и универсальности применяются для различных процессов тепло- и массообмена. Роторные пленочн-ые испарители применяются для процессов дистилляции, упаривания растворов, а также для полной отгонки растворителя из раствора, в результате чего растворенное вещество получается практически в сухом виде. [c.164]

    В холодильной технике для получения холода при яебольших разностях температур в испарителе и конденсаторе и при температурах испарения выше 0°С применяют эжекторные холодильные установки. Они находят применение в установках по кондиционированию воздуха для сушки и охлаждения воздуха. Приводятся основные данные пароводяных эжекторных холодильных машин, изготовляемых заводом Компрессор . На рис. 4-4 показана принципиальная схема одной из холодильных машин этого типа. [c.175]

    Однако, надо иметь, в виду, что легкий крэкинг ввамо Ьен уже в этом испарителе, особенно при 500° Ц. Применение ттих ншаргге-лей дает ровную темшературу в реторте, однаад испарение для продуктов вроде газойля и вышекипящих не бывает полным, поэтому необходимо присоединять испаритель так, чтобы остатки жидкой фазы полностью могли стекать в реторту без застаивания в испарителе Конденсационная система аппарата состоит из воздушных и водяных холодильников и скрубберов. [c.377]

    Фирма Vul an Manufa turing o. выпустила конструкцию испарителя с падающей пленкой, обеспечивающую стекание тонкого турбули-зированного слоя жидкости по всей поверхности аппарата без применения перемешивающих устройств, требующих высокой точности при из-гстовлении и монтаже. Для улучшения теплопередачи и устранения возможности стекания жидкости локальными потоками (что приводит к местным перегревам) в новом аппарате жидкостная пленка по мере стекании вниз через небольшие интервалы повторно распределяется по стенке с помощью центробежного устройства [143]. [c.125]

    Лабораторные и промышленные испарители с вращающимся кубом, применяющиеся в различных ректификационных установках, стандартизированы. Их применяют как в пилотных дистилляционных установках, так и в лабораторных приборах, предназначенных для микроперегонки. Данные испарители имеют вращающийся куб в виде трубы с шаровым расширением (см. разд. 5.1.1) или круглодонной колбьг емкость которых может изменяться в интервале от 1 мл до 100 л. Наряду с дегазацией масел и смол испарители с вращающимся кубом используют для отделения растворителей и пенящихся веществ в мягких температурных условиях. На рис. 203 показана принципиальная схема данного испарителя. Конструкции таких испарителей и области их применения подробно рассмотрены Эгли [138]. Частота вращения колбы может ступенчато изменяться и регулироваться в интервале от 10 до 220 об/мин. Для удобства эксплуатации установка снабжена механическими и автоматическими [c.279]

    На схеме рис. 1-16, г применен вспомогательный холодильный цикл. Такая схема отличается сложностью в сравнении с ранее рассмотренными и требует дополнительных энергетических затрат, однако она позволяет получить /вых ь Основной теплоноситель поступает в теплообменные секции ABO, охлаждается до определенной температуры, а затем доохлаждается в испарителе вспомогательного холодильного цикла до температуры, равной (или ниже) температуре охлаждающего воздуха. Из испарителя газообразный холодильный агент (аммиак, фреон) отбирается компрессором, сжимается до давления, определяющего температуру /к, конденсируется и дросселируется в испаритель. На рис. 1-16, г в качестве конденсатора использована одна из секций основного ABO, но в зависимости от нагрузки можно использовать большее число секций или отдельно взятый ABO. Рассматриваемую схему целесообразно применять в безводных районах или при пиковых повышениях температуры атмосферного воздуха. Регулирование в ней осуществляется отключением холодильного цикла при достижении на выходе из ABO температуры вых, а при дальнейшем снижении i изменением расхода охлаждающего воздуха. [c.31]

    Значительная эндотермичность дегидрирования обусловливает применение трубчатых реакторов, в межтрубном пространстве которых циркулируют горячие газы от сжигания газообразного или жидкого топлива. Схема типичного реакционного- узла для дегидрирования сииртов представлена на рис. 138, В топке 3 происходит сгорание топливного газа, подаваемого вмсстс с воздухом чере ) специальные форсунки. Температура топочных газов слишком высока, поэтому их разбавляют обратным газом (циркуляция его в системе осуществляется газодувкой 4). Спирт поступает вначале в систему испарителей-перегревателей 1, где он нагревается до нужной температуры частично охлажденными топочными газами. Затем пары спирта попадают в реактор 2, где в тоубах нах()дится катализатор. Реакционная смесь подогревается горячими топочными газами, находящимися в межтрубном пространстве, что 1 омпеисирует поглощение тепла из-за эндотермичности продесса. По выходе из контактного аппарата реакционные газы охлаждают в холодильнике-конденсаторе (на рисунке не показан), а в случае летучих продуктов нх дополнительно улавливают водой Полученный конденсат (и водные растворы) ректифицируют, выделяя целевой продукт и непрореагировавший сиирт, возвращаемый на дегидрирование, [c.473]

    Разновидностью атмосферной перегонки нефти с двукратным испарением является схема с предварительным испарением и сложной атмосферной колонной ректификации. Пары из испарителя без конденсации и частично отбензиненная нефть после нагрела в печи направляются в атмосферную колонну. В результате несколько снижается гидравлическое сопротивление в змеевиках печи, уменьшаются число насосов и металлоемкость колонн и конденсаторов. Установки АТ такого типа находят на НПЗ страны ограничергное применение. [c.44]

    Распространенный метод очистки природных газов от НгЗ основан на применении водного раствора моноэтаноламина. Обрабатываемый газ противотоком пропускается через поглотительную башню и выходит из нее очищенным от сероводорода и охлажденным за счет теплообмена с входящим потоком регенерированного абсорбента. Отработанный раствор выпускается через нижнюю часть поглотительной башни и после теплообмена с различными потоками поступает в отпарную колонну. Там аминовый раствор очищают от сероводорода струями острого пара и рециркуляцией отстоя через испаритель. Кислые газы охлаждаются, содержащийся в них водяной пар конденсируется, а остаточные газы сжигаются на факеле или использ уются в качестве сырья для производства серы, что зависит от их объема и содержания серы. [c.32]

    В работе [Kletz,1984] обсуждается вопрос о выборе подходящего оборудования с точки зрения возможного сокращения объемов и числа перерабатываемых веществ. Примером в данном случае может служить конструкция ректификационной колонны. Автор высказывается за применение колонн с меньшим объемом испарителя с целью уменьшения остатка жидкости в нем. В работе сделан вывод о том, что один завод в целом менее опасен, чем два завода половинной мощности. [c.522]

    Технологическая схема процесса, разработанного фирмой Shell Oil, с непрерывной регенерацией катализатора представлена на рис. 4.12. Сырье подвергают осу лке в аппаратах 1 и подают в реактор 2. Реакционная масса разделяется вотстойнике 4, из которого часть катализатора рециркулирует в реактор 2, а часть поступает в регенератор 3, соединенный с реактором 2. Углеводородный поток фракционируют в деизобутанизаторе 5 и депропанизаторе 6. Алкилат после испарителя 7 подвергают щелочной и водной промывке в скрубберах 8. Благодаря применению регенерации расход катализатора снижается на 90%. [c.128]

    Газожидкостные потоки — наиболее часто встречающийся вид многофазных течений он находит широкое применение во всех областях промышленности. Целый ряд промышленных установок, таких, как системы трубопроводов для транспортировки газонефтяных смесей, испарители и котлы, конденсаторы, системы подводного горения, сооружения для очистки сточных вод, установки конди-инонирования воздуха и холодильные установки, криогенные установки, включают в себя такие течения. Газожидкостные системы имеют также большое значение для метеорологии и других наук, изучающих природные явления. [c.176]


Библиография для Испарители при применении: [c.119]   
Смотреть страницы где упоминается термин Испарители при применении: [c.75]    [c.285]    [c.21]    [c.194]    [c.151]    [c.39]    [c.203]    [c.274]    [c.372]   
Коррозия и защита химической аппаратуры Том 3 (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Испаритель



© 2024 chem21.info Реклама на сайте