Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насосы в производстве кислоты

    Ацетальдегид на указанном производстве получался по реакции Кучерова — гидратацией ацетилена в сернокислой среде в присутствии солей двухвалентной ртути. Процесс осуществлялся по следующей схеме в гидрата-тор загружалась кислота и ртуть система продувалась азотом до содержания кислорода в отходящем азоте менее 1 % включался водокольцевой насос, и ацетилен, барботируя через слой контактной кислоты, реагировал с водой с образованием ацетальдегида. [c.224]


    На рис. 49 представлена упрощенная схема современного производства серной кислоты на базе колчедана по системе двойного контактирования и двойной абсорбции (ДК—ДА). Причем, на схеме изображены лишь основные аппараты по газовому тракту, без печного отделения, без холодильников, насосов, сборников кислоты и коммуникаций к ним. В каждой из башен системы циркулирует кислота, производится питание кислотой и выдача ее по схеме, изображенной на рис. 50. Кратность циркуляции составляет в среднем 30, т. е. лишь тридцатая часть кислоты подается в виде питающей и выводится из цикла. [c.133]

    Сухое мыло может быть получено на установку готовым или приготовлено непосредственно в процессе производства смазки, В последнем случае омыляемое сырье и водный раствор щелочи (суспензия) в необходимых количествах смешиваются в попеременно действующих реакторах, снабженных высокооборотным перемешивающим устройством и рубашкой для подачи теплоносителя. После завершения реакции омыления или нейтрализации (для жирных кислот) водная пульпа мыла поступает на сушку в вакуумный барабанный аппарат непрерывного действия. Сухое мыло эрлифтом подается в бункер, а затем уже весами 5 дозируется в один из двух параллельно установленных реакторов 1, куда предварительно дозировочным насосом 2 закачивается примерно 2/3 необходимого количества нефтяного масла. После тщательного перемешивания смесь насосом 2 прокачивается через электрический трубчатый нагреватель 8, где нагревается до 200— 210 °С и далее смешивается с остатком масла и масляным раствором присадок в смесителе 9. Затем смесь поступает в деаэратор 10, в циркуляционном контуре которого установлен гомогенизирующий клапан 6. В деаэраторе из мыльно-масляного расплава удаляется воздух, после чего расплав направляется для охлаждения в скребковый холодильник 12. Охлажденная смазка поступает в сборник-накопитель 16, а некондиционный продукт через сборник-накопитель 15 направляется на переработку или откачивается с установки, [c.103]

    Кроме того, пластмассы применяют для сосудов, колонн, нутч-фильтров, вентиляторов, насосов и трубопроводов всех видов. Для нутч-фильтров применяется полиэтилен и полипропилен толщиной до 40 лгж. Чаще всего полиэтилен применяется как конструкционный материал для изготовления оборудования в производстве фтористоводородной кислоты. Из полиэтилена или полипропилена штамповкой могут изготовляться рамы для фильтрующих пластин с длиной до 1000 мм. Такие плиты легче чистить и, вследствие высокой коррозионной стойкости, не происходит загрязнение продукта, что особенно важно при производстве красителей и медикаментов. Из полистирола и жесткого поливинилхлорида изготовляют насадочные кольца, характеризующиеся высокой химической стойкостью и небольшим весом при сравнительно небольшой стоимости. Литьем под давлением изготовляют также сопла для фильтров, [c.221]


    Так, в ХТС производства карбамида газовые компрессоры и насосное оборудование имеют резерв на три газовых компрессора и каждые три насоса, работающие в трех параллельных технологических линиях, предусмотрены два резервных элемента. Для элементов ХТС производства слабой азотной кислоты такого состояния нет, поскольку они не имеют резерва. [c.152]

    Схема установки по производству кислоты методом мокрый катализ БК - башня -конденсатор. X - холодильник, Е - емкость приема серной кислоты, Э -электрофильтры, Н- насос подачи кислоты, ТО - точки измерения и отбора проб, поток I - смесь газов из контактного аппарата, II - несконденсировавшаяся часть газа с содержанием капель и брызг, III - очищенный газ в атмосферу, IV - уловленная кислота на склад, [c.465]

    Схема установки по производству кислоты методом мокрый катализ БК - башня -конденсатор. X - холодильник, Е - емкость приема серной кислоты, Э -электрофильтры, Н- насос подачи кислоты, ТО - точки измерения и отбора проб, поток I - смесь газов из контактного аппарата, II - несконденсировавшаяся часть газа с содержанием капель и брызг, III - очищенный газ в атмосферу, IV - уловленная кислота на склад, V - кислота из башни- конденсатора, VI - товарная серная кислота, VII - на орошение [c.465]

    То же наблюдается в случае неисправности оборудования. Например, при несвоевременном проведении планово-предупредительного ремонта может остановиться нагнетатель или насос, подающий кислоту на орошение моногидратного абсорбера. В обоих случаях это приведет к остановке производства и к повышению себестоимости серной кислоты. Себестоимость также увеличится при несвоевременной подаче колчедана в печь, образовании тумана в абсорбере, большой влажности газа, несоблюдении температурного режима и др. Приведенные примеры показывают, что любое отклонение от норм технологического режима приводит к повышению себестоимости серной кислоты. [c.329]

    И — реакторы и центрифуги для нитрования, автоклавы, трубопроводы для производства нитроцеллюлозы, сальники, насосы для кислот, клапаны. [c.420]

    Например, в производстве ацетальдегида ртутным способом ацетилен в гидратор, заполненный контактной кислотой, подавался центробежным водокольцевым насосом. Тем не менее трубопроводы и производственное здание подвергались сильной вибрации. Причиной вибрации в данном случае явилась неудачная конструкция газораспределительного устройства, вмонтированного в нил нюю часть гидрататора. Газораспределительное устройство было выполнено в виде цилиндра с боковыми щелями и наглухо приваренной крышкой. Газовые потоки в гидрататоре получались пульсирующими, вследствие чего появились низкочастотные вибрации с большой амплитудой колебания. Впоследствии усовершенствовали конструкцию газораспределительного устройства, что позволило значительно снизить вибрацию. [c.105]

    При непрерывной работе машины в химическом производстве рекомендуется производить смену сальников два раза в месяц. Тщательный и регулярный уход за сальниками особенно необходим в вакуум-насосах и компрессорах, в которых используются в качестве рабочих жидкостей кислоты, щелочи и другие химические продукты. Нормально затянутый гидравлический сальник должен пропускать воду в виде тонкой струи или отдельных капель. Для [c.305]

    На рис. 5.6 изображены электронасосные агрегаты. Элсктрона-сосный агрегат типа ТХИ-500/20-И-Щ (рис. 5.6, а) предназначен для перекачивания пульпы экстракционной фосфорной кислоты в технологических линиях но производству сложных минеральных удобрений. В состав агрегата входит центробежный погружной вертикальный насос с опорами вне перекачиваемой жидкости и с открытым консольно посаженным рабочим колесом. Агрегат может перекачивать пульпу плотностью не более 1900 кг/м , вязкостью до 30 МПа-с, температурой от —40 до +100°С. В пульпе допустимо наличие твердых включений размером не более 1 мм, объемная концентрация которых не должна превышать 15%. Горизонтальный одноступенчатый агрегат типа Х90/33-Д ( 5ис. 5,6, б) предназначен для перекачивания химически активных и нейтральных жидкостей плотностью не более 1850 кг/м , имеюш,их твердые частицы размером до 0,2 мм, объемная доля которых не превышает 0,1 %. [c.180]

    Поток воды нагревается до заданной температуры (обычно 40-60 С) в теплообменнике специального бойлера, а затем поступает в смеситель, где в него автоматически с помощью насосов с регулируемой компьютером частотой оборотов вводятся заданные рецептом количества эмульгатора, кислоты и других компонентов. На выходе смесителя обычно предусматривают небольшую емкость объемом 20-100 л" для некоторой задержки приготовленной водной фазы с тем, чтобы завершилась реакция эмульгатора с кислотой. Обычно емкость рассчитывают таким образом, чтобы время задержки составляло 10-20 с. Непосредственно перед входом трубопровода водной фазы в мельницу устанавливается поточный рН-метр, который управляет подачей кислотного насоса и, тем самым, поддерживает заданный уровень кислотности водной фазы. При запуске процесса производства водная фаза с показателем pH выше заданного направляется в специальный отстойник. По достижении заданного уровня pH автоматический трехходовой клапан направляет водную фазу в мельницу. После этого открывается автоматический клапан битумной линии, битум направляется в мельницу на смешение с водной фазой с получением эмульсии. Остановка процесса осуществляется в обратном порядке битумный клапан направляет поток битума на циркуляцию, водная фаза продолжает промывать мельницу и систему эмульсионных труб около 1 минуты, затем выключаются насосы химикатов и по достижении рН=7 процесс останавливается. [c.104]


    Из-за высокой стоимости потребление циркония в других областях невелико. В химическом машиностроении он идет на изготовление реакторов, насосов, арматуры и т. д. для работы в средах, содер) ащих соляную кислоту, ее пары и хлор, и в щелочных средах при повышенной температуре (например, при синтезе мочевины). Цирконием заменяют изделия из благородных металлов, например фильер в производстве искусственного шелка. Небольшое количество циркония используется в вакуумной технике и электронике. Цирконий — превосходный геттер, поэтому изготовленные из него вводы, держатели, экраны и другие детали повышают надежность электронных ламп. Его применяют в хирургии для штифтов, зажимов, пластинок, скрепок и т. д. в них он конкурирует с танталом. [c.308]

    На рис. IX.И изображена схема производства контактной кислоты из серы, не содержащей мышьяка [90]. Расплавленная в плавильнике сера насосом подается для сжигания в печь 4, представляющую собой стальную [c.536]

    Варочный котел соединен с трубчатым конденсатором с прямым и обратным отводом конденсата. Конденсатор присоединен к сборнику для над-смольных вод, приключенному к вакуум-насосу (рис. XI.25). Для производства новолачных смол проводят поликонденсацию фенола с формальдегидом согласно следующей примерной рецептуре фенол 100 вес. частей, формальдегид 26 вес. частей, соляная кислота 1 вес. часть. [c.747]

    Для обоих процессов — производства блочных пенопластов и заливки на месте ирименения — разработаны трехкомпонентные заливочные машины [27], основные узлы которых (система кондиционирования, дозировочные насосы, линии рециркуляции и смесительная головка) выполнены нз материалов, стойких к действию агрессивных сильных неорганических кислот. Современные заливочные машины имеют производительность от 5 до 65 кг/мни. Ол<и-дается, что заливка на месте ирименения станет основным методом получения пенопластов. [c.177]

    Технологическая схема производства представлена на рис. 2.71. В контур циркуляции анолита, отмеченный на рисунке жирной линией, непрерывно с помощью дозирующего насоса подается бензол в газоотделитель 3, смесь освобождается от кислорода и углекислого газа, выделяющихся в процессе электролиза. Циркулирующий в системе анолит представляет собой смесь 20%-ной серной кислоты и бензола в соотношении 2 1. Часть анолита непрерывно поступает в сепаратор 4J где бензол, содержащий хинон, отстаивается, отделяется и направляется в газоотделитель 5 катодного контура. Во второй камере сепаратора раствор серной кислоты очищается от шлама и возвращается на электролиз. [c.225]

    В — при 75—110°С в смеси бензола с концентрированной серной кислотой при производстве бензолсульфокислоты (И). И — насосы, клапаны, фитинги. [c.238]

    В — при 20°С в ледяной уксусной кислоте. И — насосы, краны при производстве ацетоуксусного эфира. [c.442]

    В — при 138°С в 50—75%-ной уксусной кислоте. И — реакторы для производства уксусной кислоты путем дробной перегонки древесины и экстрагирования кислоты растворителями. И — насосы. Перед началом работы рекомендуется медленно разогреть насосы. [c.445]

    В цехе для соляной кислоты применялись фаолитовые, фарфоровые, графитовые, ферросилидовые насосы. Фаолитовые и фарфоровые насосы разрушались в течение 4—5 дней, графитовые насосы производства Новочеркасского электродного завода служат один год. Насосы из кремнистого чугуна обладают более высокой коррозионной стойкостью. Для соляной кислоты применяли эмалированную запорную арматуру, фарфоровую, футерованную полиэтиленом и гуммированную. Эмалированная арматура быстро выходила из строя из-за дефектов в эмалированном покрытии, срок службы ее ограничивался одной неделей, фарфоровой — менее одной недели. [c.22]

    Экстракционную фосфорную кислоту, содержащую 54% Р2О5, из хранилища / насосом 2 подают в напорный сборник 3, откуда она поступает, в подскруб-берный бак 12, из которого насосом 13 кислоту подают на орощение скруббера 7. Частично. аммонизированную кислоту насосом -доэатором 14 через теплообменник 8 подают в реактор 9, куда из рессивера // одновременно поступает подогретый до 80 °С аммиак. Образующаяся парогазовая смесь поступает в скруббер 7 для очистки от аммиака и через конденсатор 4 вентилятором 6 выбрасывается в атмосферу. Конденсат сливают в емкость 5 его можно использовать для производства жидкого полифосфата аммония. [c.126]

    Различают индивидуальную и коллективную (бригадную) сдельную оплату труда. Индивидуальная сдельная оплата труда является наиболее эффективной формой сдельной оплаты, так как предусматривает индивидуальный учет выработки на каждом рабочем месте. При непрерывности процесса, как это бывает в производстве серной кислоты, установить индивидуальную сдельную оплату труда по всем рабочим местам трудно, так как невозможно учесть выработку на каждом рабочем месте в отдельности поэтому в данном случае приходится применять коллективную сдельную оплату, но при этом необходимо стремиться максимально разукрупнять коллектив. Например, в производстве серной кислоты отдельно устанавливают нормы выработки для разгрузчиков колчедана, печников, отвозчиков огарка, башенщи-ков, обслуживающих дробилки, насосы, сливщиков кислоты и др. [c.268]

    Совреме[1Иое предприятие химической промышленности состоит из комплекса связанных между собой технологических цехов и производств. Между цехами п производствами, а внутри них между аппаратами по трубопроводам непрерывно под давлением перемещаются различные жидкости и растворы кислоты, щелочи, спирты II др. Это перемещение осуществляется с помощью насосов. [c.90]

    При производстве новолачных олигомеров с использованием аппаратов идеального вытеснения (рис. 34) фенол и формалин из мерников / и 2 подают в емкость 4 для приготовления реакционной смеси. В эту же емкость из аппарата 3 подается раствор щавелевой кислоты. Полученная реакционная смесь перекачивается в расходную емкость 5, а из нее — в напорную емкость 6, откуда самотеком поступает в многосекционный реактор 7, соединенный с наклонным обратным холодильником Я. В первой секции реактора смесь нагревается до 70—80 "С, а затем — за счет тепла экзотермической реакции доводится до кипения, которое поддерживается в течение всего времени пребывания смеси в реакторе. Эмульсия олигомеров из реактора поступает в отстойник 9, в котором после охлаждения примерно до 60 °С разделяется на два слоя нижний— олигомерный и верхний — водную фазу. Из отстойника олигомеры с влажностью 15—18% и содержанием свободного фенола около 16% поступают в трубную сушилку //, а водная фаза — на обес-феноливание. Высушенные олигомеры подаются в стандартизаторы 12, а затем на охлаждающий барабан 14, с которого срезаются ножом, и направляются на упаковку. Пары, выходящие из трубной сушилки 11, конденсируются в холодильнике 13. Конденсат собирают в вакуум-сборниках 15, а затем перекачивают насосом в мерник 15, из которого вводят малыми добавками в исходное сырье (или направляют на термическое обезвреживание — сжигание). [c.56]

    Технологическая схема производства моющего средства на основе алкилсульфата изображена на рис. 94. В пленочный реактор 1 непрерывно подают спирт, воздух и пары 50з, разбавленные воздухом. Выходящие газы отделяют в сепараторе 2 от жидкости и направляют в абсорбер 3 для санитарной очистки от остатков 50з. Полученную алкилсерную кислоту нейтрализуют концентрированным раствором щелочи в аппарате 4, имеющем мешалку и выносной холодильник 5, через который жидкость прокачивается насосом. Температура при нейтрализации не должна превышать 60°С. После этого в аппарате 6 с мешалкой проводится более точная нейтрализация смеси (до pH 7 конотроль специальным рН-метром). Нейтрализованная масса, содержащая алкилсульфат и воду, поступает далее в смеситель 7, где к ней добавляют [c.326]

    Упрощенная схема производства адипиновой кислоты нз цикло-гексанала изображена на рис. 116. Анол и свежую 60%-ную азотную кислоту (в двукратном количестве по отношению к стехиомет-ричесьому и с добавкой медь-ванадиевого катализатора) подают на всасывающую линию насоса /, где они разбавляются большим объемом циркулирующего оксидата, и затем в трубчатый реактор 2, охлаждаемый водой. [c.393]

    Успехи в области машиностроения и металлургии, освоившей производство разнообразных сплавов (обладающих химической стойкостью и высокой механической прочностью, устойчивых к износу, к действию высоких температур), а также все расширяющееся применение пластических масс в качестве конструкционных материалов позволили значительно усовершенствовать многие аппараты и машины, используемые в химической промышленности. В частности, были созданы насосы для перекачи-- вания кислот, компрессоры для высоких давлений, высокопроиз- [c.17]

    Производство ацетопропилового спирта (АПС) на Салаватском нефтехимическом комбинате осуществляется путем гидрирования — гидратации сильвана (а — метилфурана) в реакторах периодического действия в присутствии катализатора —20%-ного раствора хлористого палладия в 1 5%-ном водном растворе соляной кислоты. В реактор объемом 1 ж заливают 450—500 л сырьевой смеси с объемным отношением сильван вода 1,3 1 и катализатор. Количество катализатора берется из расчета 4,5 г РсЮг на 1 кг сильвана. Перемешивание реакционной массы производится циркуляционным насосом производительностью 7 м 1час отбором ее снизу и подачей сверху. [c.120]

    На рис. 103 приведена принципиальная технологическая схема установки для производства комплексной кальциевой смазки типа униол. В смеситель 5 загружают сырьевые компоненты (нефтяное масло, фракцию синтетических жирных кислот и уксуснук> кислоту). При нецрерывном перемешивании -смесь нагревают до 90 °С и при этой температуре подают 25—30%-ное известковое молоко Са(0Н)2. Насосом 6 однородная суспензия подается в реактор 11, в котором -за счет циркуляции теплоносцтеля поддерживается температура 120—140 °С. Дисперсия мыльного загустителя в масле прокачивается насосом 12 через трубчатый подогреватель 13. где при температуре около 180 °С полностью завершаются процессы омыления и диспергирования загустителя в масле. Далее расплав поступает в испарительную колонну 14, где в вакууме (39,9—66,5 кПа) удаляется основная часть воды. Обезвоживание можно проводить в одном или двух испарителях, как показано на рисунке. В испарителе 18 дисперсия подается с температурой 180—200 °С и доиспарение влаги осуществляется при более глубоком вакууме. [c.374]

    Для получения преимущественно альфа-олефинов на вновь сооруженной установке церезин подвергают высокотемпературному крекингу в трубчатой печи при 480—510°. Кратность циркуляции 6. Целевой фракцией принята фракция крекинг-продукта 170—320°. Подное число ее равно 70—80, что соответствует содержанию олефинов 50—60 Сопроцесс сульфирования сырых олефинов осуществляется непрерывно 96—98-процентной серной кислотой в циркуляционных насосах-сульфураторах 5. Сульфирование проводится при 20 , производительность циркуляционного насоса равна 8—10 м 1час. Мо-.1ярпое соотношение сериой кислоты и олефинов в период освоения производства составляло 1,6 I. [c.77]

    Применение металлов подгруппы цинка и их соединений. Большое количество цинка и кадмия расходуется на покрытие изделий из черных металлов в целях защиты их от коррозии. Для этого применяют электрохимические и химические методы. Эти покрытия анодные. Цинк применяется в производстве цинково-угольных элементов (Лекланше), сплавов с медью (латунь, томпак) и как протектор. Кадмий — один из компонентов легкоплавких сплавов (сплавы Вуда, Розе и др.). Его используют как поглотитель нейтронов в регулировании работы ядерных реакторов. Из кадмия готовят электроды щелочных аккумуляторов. Металлическая ртуть применяется для изготовления различных приборов вакуумных манометров и насосов, выпрямителей, ртутных кварцевых ламп, барометров, термометров и т. д. Очищают ртуть фильтрованием через бумагу или замшу и, пропуская ее в виде мелких капель через колонку с раствором нитрата ртути (I), подкисленным азотной кислотой, а также перегоняя в вакууме. [c.364]

    Карбонатная масса из первой секции 6 переводится во вторую 7, где к ней из мерника 3 насосом 5 добавляется раствор едкого натра и производится каустическое доомыление жирных кислот и нейтрального жира. Если в производстве применяется соапсток, то из него получают косвенным методом в аппарате 8 соапсточное ядро, которое добавляют в секцию 7 варочного аппарата, где оно смешивается с основной массой мыла, сваренного прямым методом. Готовое мыло непрерывно поступает в мылосборник 9 и направляется на дальнейшую обработку. Для получения более чистого мыла его подвергают частичному высаливанию в аппарате 10, куда из мерника 4 поступает раствор поваренной соли. Высаливание также ведется непрерывно, а разделение мыльного клея на ядро и подмыльный клей может быть произведено либо в центрифуге //, либо в колонном аппарате 12. Ядро собирается в мылосборник 9, а подмыльный клей — в сборник 13, откуда он направляется на повторную переработку. [c.135]

    Для изготовления химической аппаратуры чаще всего применяют технический алюминий с чистотой порядка 99,5%. Из алюминия более высокой степени чистоты (99,90% и выше) изготавливают только аппараты и реакторы, контактирующие с концентрированной азотной кислотой. Его устойчивость в сухом броме, яблочной, борной и лимонной кислотах и в других средах выше, чем у технического алюминия, но практически это различие незначительно. В щавелевой, фосфорной и уксусной кислотах алюминий марок АОО, АДОО, АДО и АД1 имеет сходную коррозионную устойчивость. При получении уксусной, абиетиновой, масляной, капроновой и каприловой кислот, эти-ленбромида, амилового, метилового, этилового и бутилового спиртов, анизола, циклогексанона, крезола, фенола и др, в реакторах из алюминия необходимо иметь в виду, что он устойчив в пассивном состоянии только лишь при минимальном содержании влаги в среде. Применение алюминиевых сплавов, содержащих медь, для изготовления аппаратуры для производства уксусной кислоты недопустимо. Кремнисто-алюминиевые сплавы (силумины) пригодны для изготовления литых деталей насосов, работающих в среде уксусной кислоты. [c.125]

    В — при 75—1Ю°С в смеси бензола со 100%-ной серной кислотой при производстве бензолсульфокислоты (вортит, дуримет). И — насосы. [c.238]


Смотреть страницы где упоминается термин Насосы в производстве кислоты: [c.171]    [c.167]    [c.612]    [c.615]    [c.246]    [c.341]    [c.179]    [c.63]    [c.284]    [c.310]    [c.390]   
Коррозия и защита химической аппаратуры Том 4 (1970) -- [ c.178 , c.180 , c.232 , c.240 , c.242 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Насосы в производстве

Насосы в производстве для полифосфорных кислот

Насосы в производстве для фосфорной кислоты

Насосы в производстве левулиновой кислоты

Насосы в производстве монохлоруксусной кислоты

Насосы в производстве серной кислоты

Насосы в производстве соляной кислоты

Насосы в производстве трихлоруксусной кислоты

Насосы в производстве фосфорной кислоты и фосфорных

Насосы в производстве хлорированием уксусной кислот

Насосы для кислоты



© 2024 chem21.info Реклама на сайте