Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насосы в производстве соляной кислоты

    Трубопроводы для соляной кислоты. Эти трубопроводы тоже, как правило, имеют небольшую протяженность. Их используют на участках от абсорбера к сборнику и насосу, откачивающему соляную кислоту в товарные емкости. Материалом для трубопроводов служат также фаолит, фарфор, стекло, антегмит АТМ-1, По условиям производства, связанным с необходимостью откачки кислоты в параллельно работающие емкости, трубопровод, идущий от насоса к емкости, и коллектор соляной кислоты, распределяющий ее по емкости, оборудуют запорными вентилями. Здесь применяют фарфоровые или угловые чугунные вентили, защищенные внутри резиной либо фторопластом. [c.61]


    Фаолитовые насосы при испытаниях, проведенных на Щелковском химическом заводе, показали хорошие эксплуатационные данные. Они длительное время успешно работали в производствах соляной кислоты, технического селена, пиросульфита. [c.80]

    Аппаратурное оформление абсорбции хлористого водорода определяется масштабами производства. В производствах, работающих по периодическому методу, когда газы получаются в нескольких периодически действующих аппаратах и состав их непостоянен, используют установку, изображенную на рис. 26. Хвостовые газы подают гуммированным вентилятором в нижнюю часть футерованного насадочного абсорбера. Насадка абсорбера орошается водой, циркулирующей в замкнутом контуре абсорбер — сборник — насос — холодильник. Циркуляцию поглотительного раствора ведут до получения соляной кислоты стандартной концентрации (31%), после чего полученную соляную кислоту передают для использования в производстве, а сборник заполняют чистой водой. Второй абсорбер служит для промывки водой отходящих газов перед выбросом их в атмосферу. Промывные воды из второго абсорбера выбрасывают в канализацию. [c.86]

    Характеристика работ. Ведение технологического процесса абсорбции — поглощения газов жидкостями (соляной кислотой, крепкой серной кислотой, концентрированной аммиачной водой, рассолом и др.) в абсорберах разной конструкции распыливающих, тарельчатых и других большой производительности или находящихся под высоким давлением. Проверка герметичности абсорбционной системы, правильности показаний контрольно-измерительных приборов путем контрольных анализов. Прием газа, предварительная очистка его промывкой, осушка. Прием кислоты и других орошающих жидкостей. Наблюдение за работой абсорбционной системы. Контроль и регулирование плотности орошения в очистительных колоннах и абсорберах, сопротивления в системе, температуры и концентрации газа и кислот и других параметров технологического процесса по показаниям контрольно-измерительных приборов и результатам анализов. Улавливание, очистка отходящих газов, откачка конденсата по назначению. Доведение получаемого продукта до нужной концентрации и передача готовой продукции в производство, хранилища, железнодорожные цистерны или на расфасовку. Расчет сырья для производства готовой продукции, температурного режима в зависимости от количества работающих печей, определение удельного веса кислот по ареометру и расчет согласно таблицам концентрации кислот в сборниках и других параметров, предусмотренных технологией. При необходимости остановка абсорбционных колонн и включение их в работу после остановки с доведением ее работы до нормального технологического режима. Регулирование процессов с пульта дистанционного управления, оборудованного контрольно-измерительными и регистрирующими приборами, или вручную. Периодическая промывка очистительной системы. Контроль и координирование работы промывного, сушильного, абсорбционного и других смежных отделений. Обслуживание абсорбционных и очистительных систем, оросительных холодильников, оборудования по улавливанию и очистке отходящих газов, коммуникаций, насосов сборников и другого оборудования. Устранение неисправностей в газовых линиях и кислотных коммуникациях, ремонт и замена их. Отключение системы при остановке на ремонт. Руководство аппаратчиками низшей квалификации при их наличии. [c.7]


    Политетрафторэтилен [—СРг—СРг—]п получается эмульсионной полимеризацией тетрафторэтилена в присутствии перекисных катализаторов . Плавится при 320—327 °С, плотность 2,1—2,3 г/сжз. Свойства его не изменяются при температурах от —100 до +250° С он ни в чем нерастворим и обладает необычайно высокой химической стойкостью к действию азотной, серной и соляной кислот, щелочей и органических растворителей по диэлектрическим свойствам близок к полистиролу и полиэтилену. Политетрафторэтилен применяется для изготовления электро- и радиотехнических изделий, химически стойких труб, насосов, вентилей, для производства волокон. Сополимеры тетрафторэтилена и гексафторпропилена используются в качестве термостойких материалов, не изменяющих своих свойств при повышенных температурах в течение длительного времени. [c.399]

    Керамические изделия применяли еще алхимики, пользовавшиеся глиняными ретортами для перегонки, глиняными приемниками и холодильниками. Во времена алхимиков это был единственный материал, пригодный для проведения реакций в кислой среде. Применявшиеся тогда глиняные аппараты должны были обладать поразительной прочностью. Например, в 1526 г. в Норд-гаузене (Гарц) купоросное масло получали в ретортах нагреванием сульфата железа до белого каления. Керамическая аппаратура, арматура, нутч-фильтры, трубы, насосы из керамики до сих пор еще широко применяются, но лишь в тех случаях, когда процессы проводятся при температуре до 80° и при отсутствии резких изменений температуры. Из керамики изготовляют также резервуары вместимостью несколько тысяч литров, приемники, поглотители в производстве соляной кислоты, абсорберы, скрубберы, мешалки, шаровые мельницы. Недостатком керамики является большая чувствительность ее к механическим воздействиям. То же можно сказать и о фарфоровых аппаратах, хотя их применяют и при довольно высоких температурах в условиях равномерного нагревания и охлаждения. Фарфоровые мешалки, перегонные кубы, колонны, холодильники практически устойчивы к действию почти всех реагентов. [c.249]

    В производстве применяют насосы с проточной частью из неметаллических материалов — фарфора, фторопласта — на линии транспортирования соляной кислоты. Недостатком фторопластовых насосов является отсутствие охлаждения сальникового уплотнения основная причина выхода из строя фарфоровых насосов — механические повреждения при сборке и эксплуатации. [c.7]

    В химической промышленности керамические изделия используют в качестве кислотоупорных и щелочеупорных строительных материалов. Изделия в виде кирпичей и плиток идут для футеровки различных аппаратов, например башен и желобов в сернокислотном производстве и др. Из керамики в большинстве случаев изготовляют кольца и другие виды насадок для абсорбционных аппаратов. Из нее же изготовляют значительную часть оборудования для производства соляной кислоты сульфатные печи, газоходы для хлористого водорода и др. В настоящее время имеют большое применение керамиковые холодильники, насосы вентиляторы, реторты и трубопроводы для передачи кислых жидкостей п газов, а также различные пористые фильтровальные [c.479]

    Вакуум-насосы РМК изготовляют четырех марок в зависимости от их производительности РМК-1, РМК-2, РМК-3 и РМК-4. В производстве соляной кислоты применяют вакуум-насосы РМК-3. Вес насоса 475 кг, производительность И м мин мощность электромотора 29 кет, скорость вращения 960 об/мин. Для бесперебойной работы абсорбционной системы устанавливают два вакуум-насоса, из которых один резервный. [c.89]

    Структурная схема производства хлора, водорода и каустической соды диафрагменным методом показана на рис. 1. На первой стадии производственного процесса получают сырой неочищенный рассол растворением поваренной соли. Может быть использован также естественный подземный рассол. Сырой рассол перекачивается насосами в отделение очистки, где он вместе с обратным рассолом из выпарной установки очищается от солей кальция, магния и избыточной щелочи с помощью кальцинированной соды и соляной кислоты. Очищенный рассол осветляется в процессе отстаивания и фильтрации и перекачивается в отделение (цех) электролиза. [c.8]

    Из-за высокой стоимости потребление циркония в других областях невелико. В химическом машиностроении он идет на изготовление реакторов, насосов, арматуры и т. д. для работы в средах, содер) ащих соляную кислоту, ее пары и хлор, и в щелочных средах при повышенной температуре (например, при синтезе мочевины). Цирконием заменяют изделия из благородных металлов, например фильер в производстве искусственного шелка. Небольшое количество циркония используется в вакуумной технике и электронике. Цирконий — превосходный геттер, поэтому изготовленные из него вводы, держатели, экраны и другие детали повышают надежность электронных ламп. Его применяют в хирургии для штифтов, зажимов, пластинок, скрепок и т. д. в них он конкурирует с танталом. [c.308]


    Варочный котел соединен с трубчатым конденсатором с прямым и обратным отводом конденсата. Конденсатор присоединен к сборнику для над-смольных вод, приключенному к вакуум-насосу (рис. XI.25). Для производства новолачных смол проводят поликонденсацию фенола с формальдегидом согласно следующей примерной рецептуре фенол 100 вес. частей, формальдегид 26 вес. частей, соляная кислота 1 вес. часть. [c.747]

    В зарубежном насосостроении уже длительное время выпускаются гуммированные насосы на самые разнообразные параметры по подаче и давлению. Эти насосы при налаженном производстве имеют относительно небольшую себестоимость при изготовлении, в то время, как по своей химической стойкости в ряде агрессивных сред, особенно в соляной кислоте и хлорных соединениях, они превосходят дорогостоящие насосы из нержавеющих сталей. Положительным качеством этих насосов является также высокая стойкость резины против абразивного износа, в связи с чем они широко применяются для перекачивания кислых песчаных пульп. [c.115]

    В качестве примера на рис. 4.18 приведена технологическая схема ионообменной очистки сточных вод производства хлоранилина от смесей анилина с хлоранилином. Необработанная сточная вода поступает в резервуар, куда дозируется из мерников 2 соляная кислота для снижения рН 4- -4,5. Подкисленная сточная вода насосом 16 подается на фильтр, где отделяется от выпавших при подкислении взвешенных веществ. Фильтрат поступает в блок последовательно расположенных ионообменных колонн с общей высотой слоя катионита КУ-2 не менее 3 м скорость фильтрования около 2 м /(м ч). Обычно две колонны работают в режиме ионного обмена, а одна регенерируется. Регенерационный аммиачно-метанольный раствор насосом 14 из мерника 8 подается в регенерируемую колонну снизу вверх. Подогретая до 35—40 С вода для промывки отрегенерированной колонны поступает в нее через тот же мерник. [c.152]

    Эти материалы и изделия из них (штучные материалы) отличаются высокой стойкостью ко многим агрессивным средам. Например, керамические материалы, каменное литье и пластмассы применяют в производстве серной и соляной кислот при транспортировании агентов применяют трубопроводы и корпусы насосов из керамики и пластмасс, а для связывания различных материалов широко используют цементы и бетоны. [c.20]

    Цирконий исключительно стоек по отношению к кислотам, в том числе соляной. В этом он уступает только танталу. По отношению к щелочам сравним только с благородными металлами. Однако вследствие высокой стоимости потребление циркония для изготовления химической аппаратуры пока невелико. Его используют для замены изделий из благородных металлов, например фильер в производстве искусственного шелка, изготовления форсунок, деталей насосов, арматуры для работы в средах, содержащих соляную кислоту, ее пары и хлор 3]. Небольшими, но важными потребителями металлического циркония являются электровакуумная техника и электроника. Цирконий — превосходный геттер, поэтому изготовление из него вводов, держателей, экранов и т. д. повышает надежность электронных ламп [3]. Цирконий находит применение в хирургии, где используется для наложения швов, изготовления штифтов, зажимов, пластинок и т. д. и успешно конкурирует с танталом [3]. [c.427]

    Промышленный процесс производства фенола заключается в следующем. Насосом высокого давления хлорбензол с растворенным в нем дифениловым эфиром и раствором щелочи подают в трубчатую печь (медные или выложенные медью стальные трубы), где происходит нагревание до 350°. После охлаждения давление при помощи дроссельного вентиля снижают и отгоняют из полученной реакционной смеси дифениловый эфир с водяным паром. Фенол выделяют из смеси путем нейтрализации раствора фенолята двуокисью углерода или соляной кислотой  [c.88]

    Из брызгоуловителя хлористый водород поступает сверху в трубчатый холодильник 3, охлаждаемый рассолом, в котором конденсируются остатки бензола. Из холодильника выходит хлористый водород, полностью освобожденный от бензола. Его поглощают водой. Стекающий из холодильников и брызгоуловителя бензол, содержащий примесь соляной кислоты, поступает в керамиковый сборник 4, откуда паровым насосом 5 его подают в котел с мешалкой 6, где нейтрализуют содой. Из нейтрализатора бензол тем же насосом передают в отстойник 7 с коническим днищем, в котором он отделяется отстаиванием от раствора и твердых комков поваренной соли. Из отстойника бензол тем же насосом передают обратно на производство хлорбензола, а нова- [c.246]

    Из реакторов гидролиза (этерификации) 8 хлористый водород поступает в скруббер 7, в верхнюю часть которого насосом 10 подается 25%-ный раствор соляной кислоты. После насыщения хлористым водородом в абсорбере 7 поток 36%-ной соляной кислоты поступает в десорбер 6, где от насыщенной соляной кислоты отделяется избыточный хлористый водород, направляемый в реактор 1 синтеза водородсодержащих хлорсиланов (дихлорсилана, трихлорсилана и др.). Избыточная соляная кислота выводится из системы. При такой схеме хлористый водород полностью утилизируется на базе очищенного возвратного хлористого водорода обеспечивается производство водородсодержащих хлорсиланов. [c.115]

    При организации поточного производства эмалированных труб необходимо выбирать такие процессы очистки поверхности, которые могут гарантировать соответствующую степень подготовки наружной и внутренней поверхностей труб к эмалированию без контроля каждой трубы в отдельности. К числу таких процессов относится обезжиривающий отжиг, широко распространенный в практике производства стальных эмалированных изделий (посуды и др.). За 7—10 мин происходит не только полное удаление всех жиров, масел и других органических веществ, но и заметное обезуглероживание поверхностного слоя металла. Наиболее продуктивный способ удаления окалины с внутренней поверхности труб — циркуляционное травление. Подаваемый из ванны кислотоупорным насосом травильный раствор, содержащий 140— 150 г/л серной кислоты (при 60° С) или 120—130 г/л соляной кислоты (при 20° С), непрерывно в течение 7—10 мин циркулирует через трубы. При этом окалина с внутренней поверхности труб удаляется полностью, а после последующей промывки в течение 3—5 мин проточной водой, заполняющей все сечение трубы, удаляется также травильный шлам. Продолжительность пассивирования поверхности, проводимого также циркуляционным способом, с последующей сушкой подогретым воздухом, нагнетаемым при [c.297]

    И Др.). отсасывают из сульфатных печей с помощью вакуум-насоса, установленного в конце абсорбционной. истемы. Газ вначале поступает в горячую башню 1 для охлаждения и очистки от сульфатной пыли и части увлеченной серной кнслоты. Из горячей башни вытекает в небольшом количестве грязная соляная кислота ( башенная кислота), являющаяся отходом производства. Газ из горячей башни поступает для поглощения хлористого водорода в абсорбционную систему, работающую по способу Гаспаряна. Перед входом в систему газ проходит очиститель 2, в котором он барботирует через слой соляной кислоты для полной очистки от примеси серной кислоты. Затем газ проходит снизу вверх через абсорбционную систему <3, состоящую из шести ступенчато расположенных абсорберов барботажного типа. Вода подается в верхний шестой абсорбер и проходит через все абсорберы, идя навстречу газу, который барботирует через нее. При этом хлористый водород из газа поглощается водой и образуется крепкая соляная кислота, которая выходит из первого абсорбера [c.85]

    Непрерывный метод. Одна из возможных схем производства новолачных смол непрерывным методом изображена на рис. 85. Дозировка фенола и формалина в верхнюю царгу реакционного аппарата колонного типа, снабженного мешалкой, производится непрерывно дозировочными насосами. Исходные компоненты могут загружаться и в смеси, в этом случае фенол и формалин предварительно перемешивают в смесителе. Соляную кислоту вводят во все царги колонны. Система дозирования оснащена средствами кон- [c.238]

    Аппаратурное оформление процесса получения синтетической соляной кислоты и хлористого водорода относительно несложно. Большая часть оборудования (абсорберы, насосы, колонны и др,) представляет собой обычную типовую химическую аппаратуру, употребляемую во многих химических производствах. Специфическим аппаратом, характерным для данного производства, является только печь, в которой осуществляется синтез нее. Характерной чертой аппаратурного оформления является также то, что часть аппаратуры, (абсорберы, колонны, холодильники, сборники, емкости, насосы), а также некоторые трубопроводы и арматура ж>-за коррозионных свойств влажного хлористого водорода и соляной кислоты изготовляют из неметаллических коррозионно-стойких материалов, а аппараты (в основном емкости и колонны), изготовляемые из стали, имеют защитные покрытия (гуммировка, кислотоупорные керамические материалы и т,п,). [c.48]

    Оборудование участка разложения катализаторного комплекса (разлагатели ротационных аппаратов, насосы и трубопроводы) в производстве полиэтилена низкого давления изготовлено из титана. Коррозионные среды содержат суспензию полиэтилена в бензине, изопропиловый спирт, алкоголяты алюминия и титана, примеси соляной кислоты (pH = 2- 5). Скорость коррозии титана не превышает 0,005 мм/год [396]. [c.125]

    Прежде всего непроницаемый графит был применен в производстве соляной кислоты, где до него не было хорошего химически стойкого теплопроводного материала. Из графита изготовляются испарители, абсорберы, конденсаторы, центробежные насосы и др. Благодаря высокой теплопередаче (свыше 1000 ккал1м час °С) в абсорберах достигаются большие скорости абсорбции. [c.22]

    Вакуум-насосы РМК изготовляют четырех марок в зависимости от их производительности РМК-1, РМК-2, РМК-3 н РМК-4. В производстве соляной кислоты применяют вакуум-насосы РМК-3. Вес насоса 475 кг, производительность 11 м 1мин мощность электромотора 29 кет, скорость вращения 960 об/мин. [c.104]

    Производство ацетопропилового спирта (АПС) на Салаватском нефтехимическом комбинате осуществляется путем гидрирования — гидратации сильвана (а — метилфурана) в реакторах периодического действия в присутствии катализатора —20%-ного раствора хлористого палладия в 1 5%-ном водном растворе соляной кислоты. В реактор объемом 1 ж заливают 450—500 л сырьевой смеси с объемным отношением сильван вода 1,3 1 и катализатор. Количество катализатора берется из расчета 4,5 г РсЮг на 1 кг сильвана. Перемешивание реакционной массы производится циркуляционным насосом производительностью 7 м 1час отбором ее снизу и подачей сверху. [c.120]

    Фильтрат из нутч-фильтра поступает в сборник 3, промывные воды в сборник 4, а промытый осадок направляют в сушилку 5. Высушенный осадок перекиси марганца измельчают, упаковывают в ящики и отправляют потребителю. Фильтрованный раствор из сборников 3 и 4 насосом 6 перекачивают в реактор-гидратор из эмалированной стали 7, охлаждают до О плюс 2° С и при перемешивании нейтрализуют разбавленной вдвое соляной кислотой или смесью серной и соляной кислот (плотность П50—1200 кг1м ), получаемой в виде отхода производства при насыщении спирта хлористым водородом (на стадии енолизации). Кислоту прибавляют тонкой струей до кислой реакции (pH 1,5—2,0 — фиолетовый цвет бумаги конго), при которой выделяется кристаллический гидрат диацетон-2-кето-/,-гулоновой кислоты. Полноту осаждения определяют анализом. Затем массу фильтруют через центрифугу 8 и дромывают ледяной дистиллированной водой до исчезновения в промывных водах ионов С1 и 804". [c.279]

    Органические основания вытесняются из катионита при регенерации 5%-ным раствором NH3 в смеси растворителей, состоящей из 80% спирта (этилового или метилового) и 20% воды. При этом концентрация аминов в отработанных растворах может быть доведена приблизительно до 100 г/л. Из таких растворов аммиак и спнрт отгоняют и используют в следующей операции регенерации, а от водной фазы отделяют извлеченные из ионообменной смолы сырые органические продукты для дальнейшей их ректификации. Подогрев регенерирующего раствора (или колонны с катионитом, отключенной на регенерацию) до температуры 35—40° С значительно ускоряет процесс отмывки органических веществ из смолы. В качестве примера на рис. 33 приведена технологическая схема ионообменной очистки сточных вод производства хлоранилина от смесей анилина с хлора-нилином. Сточная вода принимается в сборник /, куда дозируется из мерников 2 соляная кислота для понижения pH до 4—4,5. Подкисленная сточная вода насосом 18 подается иа фильтр 4, где отделяется от выпавших при подкислении взвесей. Фильтрат принимается в бак 5 п со скоростью около 2 м /м ч поступает в блок последо-вательно включенных колонн 6, 7, 8 с общей длиной слоя загруженного в них катионита КУ-2 не менее 3 м. [c.153]

    В цехе для соляной кислоты применялись фаолитовые, фарфоровые, графитовые, ферросилидовые насосы. Фаолитовые и фарфоровые насосы разрушались в течение 4—5 дней, графитовые насосы производства Новочеркасского электродного завода служат один год. Насосы из кремнистого чугуна обладают более высокой коррозионной стойкостью. Для соляной кислоты применяли эмалированную запорную арматуру, фарфоровую, футерованную полиэтиленом и гуммированную. Эмалированная арматура быстро выходила из строя из-за дефектов в эмалированном покрытии, срок службы ее ограничивался одной неделей, фарфоровой — менее одной недели. [c.22]

    Оборудование большой емкости, эксплуатируемое в производстве регенерации соляной кислоты и контактирующее с 10%-ным раствором соляной кислоты при температуре 90 °С Насосы для перекачки жидких и газообразных агрессивных сред сложного состава, содержащих абразивы, при температуре 80—100 °С Аппараты, иопытывающие пульсирующую нагрузку при остаточном давлении до 0,9 МПа при наличии агрессивных сред Оборудование, хранящееся и транспортирующееся при температуре до —30°С и контактирующее с разбавленными растворами кислот, солей и щелочей [c.77]

    На одном химическом комбинате в производстве сульфата аммония совершенно безосновательно были поставлены титановые насосы для перекачки 35/ -ной серной кислоты при 90°. Эти васосы сразу же вышли из строя. Подобный случай бая на другом заводе, где в производстве сулемы были смонтированы титановые трубопроводы для перекачки 35 ной соляной кислоты, которые также вышли из строя . Такие случаи свидетельствуют, прежде всего, о недостаточной информации предприятий о свойствах и возможных областях применения титанового оборудования. Насколько важна оперативная информация-, можно судить по опыту Великобритании, где специальная комиссия в течение двух лет анализировала прдохение в области коррозии в стране. Было установлено, что прямые убытки от коррозии, равные 1365 млн. ф. ст., могут быть уменьшены на 310 млн. ф. ст., т.е. почти на одну четверть, толысо за счет своевременной информации предприятий, исследовательских и проектных центров о современных материалах и методах защиты . [c.4]

    Из пропитанного графита, АТМ-1 и графитопласта изготовляют самую разнообразную аппаратуру (в том числе испарители, абсорберы, конденсаторы, центробежные насосы, колонны, башни) и различную арматуру (краны, вентили и др.). Теплообменная аппаратура из графитовых материалов широко применяется в производствах серной и соляной кислот. Реакторы, футерованные графитовой плиткой, нашли применение в анилинокрасочной промышленности вместо реакторов, плакированных свинцом.В производстве фосфорной кислоты графитовыми плитками футеруют реакторы из стали. Трубчатые де егматоры и колонки, футерованные графитовой плиткой, применяются в производстве гексахлорана. Футеровка производится на замазках арзамит с подслоем на основе резорцинофено-лоформальдегидной смолы. Консистенция замазки арзамит должна быть такой, чтобы плитка не сползала с вертикальной поверхности под действием собственного веса. [c.167]

    Фирма Викарб , специализирующаяся на производстве графитовых изделий и оборудования для химической промышленности, выпускает также насосы из импрегнированного графита. Эти насосы стойки к агрессивному воздействию соляной кислоты любой концентрации, серной, плавиковой и фосфорной кислот, хлороорганических растворителей. [c.99]

    Свинец, стандартный потенциал которого V = —0,126 в, находит большое применение в сернокислотном производстве, а также для защиты от разрушения подземных кабелей. Стоек в атмосфере, загрязненной сернистыми соединениями, в серной кислоте — горячей до 80% и холодной до 96%, в растворах, содержащих ионы 50 , а также в хромовой, плавиковой и холодной фосфорной кислотах. При невысоких температурах стоек в разбавленной соляной кислоте (до 10%-иой концентрации). Не стоек в азотной, уксусной и муравьиной кислотах, а также в щелочах. Перенапряжение водорода на свинце очень велико, и потому скорость коррозии свинца в кислотах, а также в дистиллированной и дождевой воде возрастает в присутствии кислорода. Стоек в жестких водах, содержащих Са304 или карбонаты кальция. Чистый свинец обладает малой прочностью, и потому для изготовления, например, труб и кислотоупорных насосов, а также нерастворимых анодов применяют сплавы свинца с сурьмой (6—13% 5Ь). Добавви в свинец теллура (до 0,05%) и олова (3—7%) предупреждают межкристаллитную коррозию свинца. [c.58]

    Наибольшее техническое значение для кремнийорганических производств имеют специальная хромо-никелевая сталь и кремнистый чугун. Кремнистый чугун, содержащий 14—16% 51, вполне устойчив к воздействию серной и соляной кислот, он применяется для изготовления насосов для перекачивания кислот и запорных приспособлений. Хромо-никелевая, так называемая нержавеющая сталь стойка к холодным кислотам, к атмосферным воздействиям, что важно при получении продуктов высокой чистоты. Обычно используют сталь Х18Н10Т (18% хрома, 10% никеля и 1% титана) и сталь Х18Н12М2Т (18% хрома, 12% никеля, 2% молибдена и 1% титана). Из хромо-никелевых сталей изготавливают реакторы, мерники, сборники, трубопроводы, запорную арматуру. [c.15]

    По отечественным м зарубежным данным, графитовая или футерованная графитовой плиткой аппаратура используется в следующих производствах синтетической соляной кислоты (камеры для сжигания хлористого водорода, абсорберы, отмывные колонны, емкости) серной кислоты (трубчатые теплообменники и холодильники) фосфорной кислоты с концентрацией до 85/8 (камеры для сжигания, абсорберы, реакторы, емкости, трубы к арматура, насосы) бромистоводо-родной кислоты (абсорберы, реакторы, отмывные колонны) плавиковой кислоты (абсорберы, резервуары, баки для фторуксусных, фтор-бористых и фторфосфорных смесей) муравьиной кислоты (холодвльнж-ки) сернистых солей (графитовые теплообменники взамен свинцовых) искусственного волокна (теплообменники, погружные элементы, насосы) сернистого ангидрида (аппараты для отмывки, теплообменник ) хлора (реакторы, охладители, отделителя) жавелевой воды (реакто-% [c.56]

    В производстве хлора и каустической соды из аппаратов, сосудов и коммуникаций, работающих под давлением, при недостаточной их герметизации могут происходить утечки хлора и других компонентов тexнQлoгичe киx сред, а в аппараты, сосуды и коммуникации, находящиеся под вакуумом, может происходить подсос воздуха. Утечки хлора и других веществ, а также подсос воздуха возможны через фланцевые соединения аппаратов сосудов и трубопроводов, а также через уплотняющие устройства арматуры, вращающихся валов газодувок для влажного хлора, насосов для перекачивания жидкого хлора растворов едкого натра, хлористого натрия, серной и соляной кислот. [c.83]

    Насосы.Для перекачки соляной кислоты используют центробежные насосы, изготовленные из кислотоупорных материалов. Практика производства показала, что надежнее (при хорошем обслуживании и аккуратном обращении) служат фарфоровые насосы и насосы из ан-тегмита АТМ-1 (прессованный графит на фенопфор-мальдегидной смоле). Применяют также термосвлидо-вые насосы. [c.58]


Смотреть страницы где упоминается термин Насосы в производстве соляной кислоты: [c.310]    [c.390]    [c.435]    [c.35]    [c.267]    [c.198]    [c.122]   
Коррозия и защита химической аппаратуры Том 6 (1972) -- [ c.106 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота соляная

Насосы в производстве

Насосы в производстве кислоты

Насосы для кислоты

Соляная кислота кислоты



© 2024 chem21.info Реклама на сайте