Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы также по названиям ионов

    Электролиз ионных расплавов. Для выделения металлов, электродные потенциалы которых намного отрицательнее водорода или на которых водород выделяется без перенапряжения, применить электролиз водных растворов нельзя. Многие из этих металлов способны вытеснять водород из воды. К числу металлов, которые не могут быть получены электролизом водных растворов, относятся следующие Ы, Ма, К, КЬ, Сз, Са, 8г, Ва, Ве, Mg, А1, Т1, 2г, ТЬ, и, МЬ, Та, Мо, , а также все лантаноиды и актиноиды. Все эти металлы могут быть получены электролизом солевых расплавов, получивших название ионных расплавов. [c.105]


    I См. также Комплексные ионы (стр. 36) Названия (стр. 141)  [c.17]

    Простые анионы, образованные в результате присоединения электронов к отдельным атомам, получают названия путем добавления к названию атома окончания -ид, например хлорид-ион (С1 ), сульфид-ион(8 ). Для комплексных ионов, образованных атомом неметалла с кислородом, высшее и низшее состояния окисления центрального атома различаются при помощи суффиксов -ат и -ит. Состояние окисления катионов металлов (см. также гл. 10) указывается римской цифрой после названия металла, например ионы Fe называются ионами железа(1П). [c.53]

    Марки ионитов, выпускаемых различными отечественными и зарубежными фирмами, а также важнейшие свойства ионитов можно найти в [8]. Общей системы номенклатуры ионитов пока не существует. В СССР их названия образуют из начальных букв слов, указывающих знак заряда фиксированного иона и свойство ионита. Так, катиониты имеют начальную букву К, аниониты — А. КУ означает катионит универсальный, КФ — катионит фосфорнокислый, КБ — катионит буферный, АВ — анионит высокоосновной, АН — анионит низкоосновной и т. д. Принято также названия марок ионитов образовывать из начальных букв соединений, служащих сырьевой базой при синтезе ионитов. Так, ММГ означает, что данный ионит синтезируется из меламина, мочевины и гуанидина, СДВ —стирола и дивинилбеизола, ЭДЭ — этилеидиамина и эпи-хлоргидрина. [c.116]

    Электростатическое взаимодействие положительно заряженного комплексного иона, в состав которого могут входить анионы или нейтральные молекулы, с анионами может привести к образованию ассоциатов — ионных пар, названных внешнесферными комплексами. Ассоциация может произойти также в результате образования ионных пар с участием комплексных катионов и [c.614]

    Если два раствора электролита разделены мембраной, непроницаемой хотя бы для одного из ионов (обычно это ион коллоида), то все остальные ионы распределяются по обе стороны мембраны неравномерно. Это сказывается на величине измеряемого осмотического давления коллоидного раствора, а также проявляется в обнаружении разности потенциалов между коллоидным раствором и равновесной с ней жидкостью. Данное явление было открыто в 1911 г. Доннаном и получило название мембранного равновесия или равновесия Доннана. Очень близко связаны с этим явлением так называемые суспензионный и золь-концентрационный эффекты. [c.305]

    Состояние сильных электролитов в растворах. Сильные электролиты не только в разбавленных растворах, но и в растворах значительной концентрации практически полностью диссоциированы на ионы, т.е. а=1. Поэтому в растворах сильных электролитов вследствие большого числа ионов усиливается электростатическое взаимодействие ионов. Каждый гидратированный ион окружен роем противоположно заряженных гидратированных ионов, образующих в соответствии с теорией Дебая — Хюккеля (1923) ионную атмосферу , которая препятствует движению ионов. С увеличением концентрации раствора усиливается тормозящее действие ионной атмосферы на ионы. Электростатическое взаимодействие в значительной степени зависит также от величины зарядов и радиусов ионов, диэлектрической проницаемости среды. Поэтому определяемая на опыте степень диссоциации сильных электролитов не отражает истинной картины распада электролита на ионы. Она получила название кажущейся степени диссоциации. [c.211]


    Ионы, которые, подобно [Си(NHз)4] +, образуются путем присоединения к данному иону нейтральных молекул или ионов противоположного знака, называются комплексными ионами. Соли, в состав которых входят такие ионы, получили название комплексных солей. Известны также комплексные кислоты, комплексные основания и комплексные неэлектролиты .  [c.575]

    Названия такого типа наиболее полезны в тех случаях, когда положение ионных и радикальных центров неизвестно или его не желательно указывать. В литературе используются также названия ион-радикал , что является приемлемой альтернативой (относительное положение радикальной точки и знака заряда в формулах также может быть противоположным, например, в масс-спектрометрической литературе). [c.246]

    Катион II носит также название иона арония Образование а-комплексов в качестве промежуточных в реакциях ароматического электрофильного замещения к 1960 г стало общепризнанным [7, 19—271 а-Комплексы были выделены в виде кристаллических солей [20—22] [c.7]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, N3" и N6, К- и Аг и т. д.). В от личие от ковалентной иогаая связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами пе зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной сэязи. Следствием этой особенности ионной связи является ассоциация всех ионов с образованием ионного кристалла, в котором каждый ион окружен ионами противоположного знака. Число ионов противоположного знака, удерживающихся данным ионом на ближайшем расстоянии, получило название координационного числа данного иона. Ионы могут удерживать также и нейтральные молекулы. При большом размере катиона и малом радиусе аниона (соотношение кат "аи > 0 3) вокруг катиона (аниона) координирует 8 анионов (катионов). В результате образуется кристалл так называемой кубической структуры — 8 ионов одного знака располагаются в вершинах куба, в центре которого находится ион противоположного знака (тип СзС1 рис. 14). [c.82]

    При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76]

    Опыт показывает, что реакция водного раствора зависит не только от наличия в нем кислот или оснований, но также и от присутствия некоторых солей. Многие соли, растворяясь в воде, способны смещать реакцию среды в ту или иную сторону. При этом происходит химическое взаимодействие между ионами соли и ионами Н+ и ОН- воды, сопровождающееся образованием слабых кислот или слабых оснований. Эта реакция получила название гидролиза соли. [c.208]

    Выражение (4.17) также является константой равновесия диссоциации воды и получило название ионного произведения воды  [c.60]

    В первом случае поглощение сопровождается либо переходом электронов внутри электронной оболочки активатора на более высокие энергетические уровни, либо полным отрывом электрона от активатора и переходом активатора ионизованное состояние (образуется дырка ). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие (исходные) энергетические уровни Или при воссоединении (рекомбинации) электрона с ионизованным центром (дыркой). Люминофоры, в которых люминесценция (поглощение и излучение энергии) связана с электронными переходами в пределах люминесцентного центра, получили название характеристических. Активаторами в таких люминофорах являются ионы переходных и редкоземельных элементов, а также ртутеподобные ионы. Кри- еталлическая решетка основы, как правило, мало влияет на электронные переходы внутри центра, поэтому спектры возбуждения и люминесценции в основном определяются природой активатора. [c.5]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]


    Ионообменная хроматография. Основана на обменной сорбции при пропускании через сорбент раствора в него переходит из сорбента эквивалентное количество одноименно заряженных ионов, ранее сорбированных этим сорбентом или содержащихся в его структуре. Сорбенты, способные к подобному обмену ионов, получили название ионитов (ионообменников). Они подразделяются на катиониты, обладающие способностью к обмену катионов, и аниониты, обменивающиеся с раствором анионами. Известны также и иониты амфотерного характера — амфолиты, способные как к катионному, так и к анионному обмену. [c.63]

    Специфическими реактивами называются такие реактивы, которые дают в определенных условиях характерную реакцию только с одним каким-либо ионом. Часто употребляют также название реактив на ион... [c.256]

    Отдельно взятый ион водорода представляет собой голый протон, лишенный электронной оболочки. Однако такой протон в водной среде существует только в виде соединения с молекулой воды Н + Н2О = НдО . Образующийся ион носит название оксония. Он получается за счет координативной связи (стр. 92, рис. рис. IV-15). Следует всегда иметь в виду, что под обозначением катиона кислотного водорода Н всегда подразумевается именно гидратированный катион оксония Н3О, который и обусловливает кислотные свойства растворов (и которые часто называют также катионом гид-рония или гидроксония). [c.189]

    Примечание. При определении остаточного активного хлора в сточных водах, очищенных от цианидов обработкой-их хлорной известью, надо учитывать следующее. Реакция между гипохлорит-ионами и цианид-ионами проходит настолько быстро, что присутствие в очищенной сточной воде остаточных гипохлорит-ионов может служить доказательством отсутствия в ней цианид-ионов и, обратно, присутствие цианид-ионов возможно лишь при отсутствии остаточных гипохлорит-ионов. Если, однако, очистке от цианидов подвергалась сточная вода, содержавшая большое количество аммиака или солей аммония (а также некоторых органических аминов), то при обработке ее хлорной известью могли образоваться хлорамины, медленно реагирующие с цианид-ионами. В этом случае активный хлор может присутствовать в сточной воде наряду с цианид-ионами. Тогда определение общего активного хлора рекомендуется заменить определением остаточных гипохлорит-ионов. Методы определения последних в присутствии хлораминов описаны в статье, название которой приведено в сноске на стр. 52. [c.89]

    Суммарный энергетический эффект процесса, таким образом, должен представлять собой разность названных величин. Очевидно, что чем слабее электрические силы, связывающие ионы металла с ионами кис-.латного остатка, тем легче молекулы воды преодолеют их. Слабость силового поля перхлорат иона СЮг, прямым следствием которой является столь чрезвычайная сила хлорной кислоты, влечет за собой также и то общее свойство Bперхлорат магния поглощает водяные пары почти с такой же жадностью, как фосфорный ангидрид, значительно превосходя этот последний по количеству поглощаемой воды на единицу веса. Поэтому безводный перхлорат магния получил применение в качестве исключительно мощного осушителя. [c.253]

    Формулу (111.47) можно получить также двумя другими способами. В первом из них, описанном в оригинальной работе Дебая и Гюккеля, Аи рассчитывали на основе мысленного процесса заряжения центрального иона и всех ионов, входящих в ионную атмосферу. При этом в процессе заряжения учитывалось перераспределение ионов, возникающее благодаря нх электростатическому взаимодействию. Работа заряжения, рассчитанная этим способом (процесс заряжения по Дебаю), относилась ко всем ионам системы, а потому для нахождения величины Аи ее нужно было продифференцировать по числу ионов данного вида I. Во втором способе, который получил название процесса заряжения по Гюн-тельбергу. предполагалось, что процесс мысленного заряжения ионов не сопровождается их перераспределением (предполагалось, что они уже до заряжения приобрели окончательное распределение, характерное для заряженной ионной атмосферы). Этот способ эквивалентен процессу заряжения конденсатора, состоящего из центрального иона и окружающей его сферической оболочки с постоянным радиусом 1/х. Работа заряжения по методу Гюн-тельберга сразу дает величину АО. Следует подчеркнуть, что различные способы расчета изменения энергии центрального иона вследствие его взаимодействия с ионной атмосферой дают совпадающие результаты лишь при выполнении соотношения (111.31). В условиях нелинейной зависимости р от ф различные способы расчета АЬ приводят к разным результатам. До сих пор не установлено, какой способ является более точным, так как уравнение Пуассона — Больцмана, получающееся при подстановке (111.30) в (111.27), не имеет строгого обоснования в статистической механике. [c.43]

    I См. также Комплексные ионы (стр. 36) Названия (стр. 141) Высокомолекулярные вещества [c.17]

    В этих соединениях вокруг центрального катиона (атома) регулярно расположены молекулы или ионы, и с этой точки зрения они напоминают комплексные соли. Однако название соль к ним неприменимо и лучше называть их просто комплексами или координационными соединениями. Лиганды, которые легко координируются атомами металла с образованием низковалентных комплексов, приведены в нижней части табл. 4.31. Координируются также амины, ионы С1 , Вг , 1 . Исключение составляет вода, р- и ионы кислородсодержащих кислот. Координационную связь в низковалентных комплексах нельзя объяснить путем кислотно-основных взаимодействий по Льюису (разд. В.З настоящей главы). Комплексы, содержащие такие связи, называют невернеровскими. Напротив, обычные комплексы, в которых взаимодействие осуществляется по Льюису (включая и незаряженные комплексные соли), называют вернеровскими. Такое деление удобно, и его часто используют на практике. Применяемые в синтетической химии катализаторы на основе комплексов переходных металлов в большинстве относятся к невернеровскому типу. [c.224]

    Не следует думать, что при беспорядочном движении иона его ионная атмосфера движется вместе с ним как одно целое. Прн движении ион покидает свою ионную атмосферу и непрерывно на пути своего движения создает новую. Этот процесс разрушения старой и образования новой ионной атмосферы протекает хотя и быстро, но не мгновенно, вследствие чего при движении иона /надушается симметричность ионной атмосферы. 1тричем Т1лотность е больше позади движущегося иона Оче- видно, появление асимметрии ионной атмосферы также вызывает некоторое торможение поступательного движения иона, которое получило название эффекта, асимметрии или релакса-Таким образом, из-за наличия ионной атмосферы прид вй-жении иона возникают два тор.мозящих эффекта электрофоретический, обусловленный движением ионной атмосферы в сторону, противоположную направлению движения иона, и эффект ре-., у лаксации, обусловленный асимметрией ионной атмосферы. V Убедительным подтверждением правильности представлений Дебая и Гюккеля является так называемый эффект Вина, обнаруженный в 1927 г. Если уменьшение подвижности ионов с увеличением концентрации объясняется наличием ионной атмосферы, то уничтожение нию подвижности предельного  [c.434]

    МОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ (донорно-акцепторные комплексы, мол. соединения), образуются из формально валентно-насьпц. молекул благодаря силам межмолекуляр-ного взаимодействия. Совр. представления о М. к. значительно шире того, что заложено в их названии, т. к. в М. к. могут входить ионы, своб. радикалы, ион-радикалы, а также молекулы в возбужденном состоянии (см. Эксимеры, Экси-плексы) к М. к. относятся и комплексы с водородной связью (см. Водородная связь). М. к. имеют вполне определенную стехиометрию и пространств, строение, при этом исходный состав входящих в М. к. молекул сохраняется. Часто М. к. рассматривают как своеобразный тип координац. соед., в [c.116]

    Реактив осаждает ионы никеля в виде соответствующего комплекса, а ионы Со +, Си +, d2+, Sb +, Sn , Bi +, Pd2+ и Pb — в виде сульфидов, поэтому названные ионы, а также Zn , Мп2+, Се , Th(IV), Zr(IV) и Сг маскируют комплексоном III при pH 10—13 (в присутствии Сг + и Bi при pH 5—6). Ионы трехвалентного железа и алюминия связывают тартратом. Мешающее влияние Pd2+ и Аи " устраняется осаждением из кипящих растворов (pH 5—6), содержащих K N. Ионы Sn2+ и Sb + маскируют сульфидом натрия в присутствии NaOH, а UOl — добавкой Nag Oa. Определению серебра не мешают Pt, SO4 , SO3 , S , SgO  [c.71]

    Явления переноса в растворах электролита тесно связаны с взаимодействием молекул и ионов. Соответствующие соотношения и связи сложны и многообразны, и их можно выразить посредство1м различных сил. Тем не менее взаимодействие между частицами растворов электролита и явления, вызванные ими, можно классифицировать, разделяя их на две основные группы разной природы. В одной из групп преобладающими силами являются электростатическое притяжение и отталкивание между электрическими зарядами ионов, т. е. кулоновские силы. Эти силы главным образом видоизменяют пространственное распределение растворенных ионов и уменьшают ионную подвижность. Теории, рассматривающие это явление, обычно объединяются под названием электростатическая теория сильных электролитов. В другой группе явлений рассматривается взаимодействие между ионами и молекулами растворителя. С одной стороны, электрическое или какое-либо другое атомное поле ионов нарушает или разрушает структуру воды (или вообще структуру растворителя). С другой стороны, оно связывает молекулы растворителя с ионами более или менее упорядоченными, но обычно не ковалентными связями. Эти явления, называемые сольватацией или в случае воды гидратацией, очень сложны. Однако общее для них состоит в том, что некоторые свойства растворителя, главным образом его структура и, следовательно, его энтальпия, энтропия, мольный объем, сжимаемость и подвижность молекул, изменяются в присутствии ионов. Подвижность молекул воды играет очень важную роль в явлениях переноса, и ионные поля влияют на нее в двух противоположных направлениях подвижность молекул воды возрастает из-за разрушения решетчатой упорядоченной структуры воды и уменьшается под действием упрочняющего структуру ион-дипольного взаимодействия, а также и других вандерваальсовых сил. Если результирующая сила, зависящая от относительной величины этих двух типов влияний, уменьшает подвижность молекул воды, то имеет место положительная гидратация (или, коротко, гидратация), если же результирую- [c.462]

    Состояние функциональных групп комплекситов определяется их предварительной обработкой, а также свойствами системы, в которой работает комплексит, и прежде всего когщентрацией водородных ионов в системе. Предельные формы комплекситов и соответствующее им состояние функциональных групп, а также названия рассматриваемых форм представлены в табл. 7.1. [c.283]

    Как показано в скобках, ионы можно обозначить также названием соответствующего радикала с трехвалептным углеродом с добавлением слова анион или катион . Многие авторы используют слова карбанион и кар-боний-иои именно в этом смысле. Например, тре/тг-бутилкатион иногда называют трет-бутилкарбоний-ионом. Последнее наименование излишне длинно и неоднозначно. [c.660]

    Исследование ион-молекулярных реакций методом спектроскопии ион-циклотронного резонанса представляет исключительный интерес для органической масс-спектрометрии, так как может дать значительную информацию о структуре ионов. Использование метода в указанных целях можно проиллюстрировать простым примером. Предполагается, что ион, образующийся при распаде гексанона-2 с перегруппировкой через шестичленное переходное состояние, представляет собой енольную форму ацетона [(1) на схеме (5.13)]. Считается также, что ион, образующийся в результате простого разрыва при фрагментации метилциклобутанола (2), имеет ту же структуру (1). Названные фрагментные ионы подвергались [c.218]

    Для описания электрических свойств границ раздела предложены различные модели строения д.э.с, В этих моделях рассматривают в первую очередь пограничный д.э.с. — распределение электростатически адсорбированных ионов в приэлект-родной зоне раствора, а также часть д.э.с., вызванную специфической адсорбцией ионов из раствора. Эти два вида д, э, с, объединяют названием ионный д, э, с. . В более простых моделях не учитывают слагаемые поверхностных потенциалов металла и раствора у/ н о, вызванные соответственно рас- [c.236]

    Основные затруднения при исследовании этих явлений заключаются в возможности цепных реакций и в недостатке точных сведений относительно размера ионных образований. Действие инертного газа на скорость подобных реакций было впервые обнаружено Линдом на смеси ацетилена и азота, исследовавшейся на образование синильной кислоты. Было обнаружено, что полимеризация ацетилена протекает гораздо быстрее в присутствии азота. Увеличение скорости оказалось прямо пропорционально степени ионизации прибавленного азота, в то время как отношение M/N оставалось без изменения. Ионы прибавленного азота очевидно образовывали центры, вокруг которых происходило концентрирование частиц. Этот эффект был назван ионным катализом , так как инертные ионы проявляли в данном случае некоторые свойства катализаторов не вступая в реакцию, они повышали ее скорость. В связи с этим было изучено действие гелия, неона, аргона, ксенона, криптона и азота в самых различных реакциях в результате было найдено, что каталитическое действие таких ионов является довольно общим явлением. Линдом была также изучена связь между механизмом бомбардировки а-частицами и явлениями, имеющими место при тихом разряде в газах, в частности соотношение между величинами M/N в этих обоих случаях. [c.51]


Смотреть страницы где упоминается термин Ионы также по названиям ионов : [c.207]    [c.223]    [c.623]    [c.53]    [c.19]    [c.156]    [c.27]    [c.61]    [c.61]    [c.288]    [c.293]    [c.362]   
Курс теоретических основ органической химии (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

также по названиям



© 2025 chem21.info Реклама на сайте