Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспергирование расходы

    Работа, затраченная на диспергирование, расходуется на увеличение поверхностной энергии, на пластические деформации и часть ее превращается в тепло, выделяющееся при диспергировании. Следовательно, чем мельче частицы, тем большей поверхностной энергией они обладают, т. е.. тем они поочнее. [c.180]

    Механохимическое диспергирование (активация) в дезинтеграторе выгодно отличается от известных тем, что компоненты (ингредиенты) бурового раствора подвергаются воздействию знакопеременных напряжений и энергия Е, подводимая для диспергирования, расходуется в течение мгновенно короткого времени т.е. для различных видов диспергирования можно записать [c.28]


    Представляется следующий феноменологический механизм, позволяющий объяснить эти экспериментальные факты на начальных стадиях диспергирования, когда большая часть вносимой Б среду энергии расходуется на уменьшение размеров частиц и число мелких осколков еще мало, в эксперименте наблюдается гладкое повышение степени дисперсности. [c.127]

    С помощью этого метода концентрируют сульфатные щелока, радиоактивные сточные воды, солевые растворы. Чтобы предотвратить отложение солей на теплообменных поверхностях, уменьшить коррозию оборудования, при выпаривании солевых стоков иногда вводят в стоки жидкий гидрофобный теплоноситель (например, парафины, минеральные масла, силиконы). Уменьшить расход теплоносителя на выпаривание можно, используя установки мгновенного испарения (УМИ). В этом случае вода нагревается в выносных теплообменниках до температуры кипения, затем она поступает в камеры испарения под более высоким давлением. Испарение происходит с поверхности воды и с поверхности капель, образующихся в результате диспергирования жидкости. [c.490]

    Этот результат полностью соответствует важному эмпирическому правилу масштабирования аппаратов с мешалками, согласно которому, для достижения одинаковой степени диспергирования в геометрически подобных аппаратах расход мощности в расчете на единицу объема должен быть одинаков. Частота вращения мешалки в образце должна быть несколько меньше, чем в модели [см. уравнение (Х-21)]. [c.451]

    Рассмотрим два предельных случая. В первом случае вследствие коагуляции устанавливается характерный для рассматриваемого аппарата диаметр частиц, не зависящий, в определенных пределах, от объемного расхода диспергированной фазы. Во втором предельном случае пренебрегается коагуляция и дробление частиц. В зтом случае остается постоянным по высоте аппарата поток числа частиц, но не меняется их диаметр. [c.245]

    Катализатор содержит 10—25 мас.% никеля, диспергированного в 75—90 мас.% окиси алюминия, и металл-промотор (Ва, 5г, Са, К, Ьа, О, Се, Ре или Си). Количество бария в катализаторе может составлять 20 мас.%. Общая поверхность катализатора — 300 м г, поверхность никеля — 5—20 м /г. При паровой конверсии углеводородов, состоящих в основном из парафинов с 5—10 атомами углерода, в присутствии катализатора при температуре 343— 496° С и давлении 10,5—105 ат получают газ, содержащий в основном водород и незначительное количество метана, двуокиси и окиси углерода. На 1 кг углерода расходуется 1,5—3,0 кг водяного пара [c.70]


    Важными рабочими характеристиками рассматриваемых колонн являются частота N и амплитуда А вибрации (пульсации). На интенсивность перемешивания и диспергирования влияют также диаметр отверстий в тарелке о, расстояние между тарелками Н, доля свободного сечения тарелки есв. Существенную роль в работе рассматриваемых аппаратов играют также удельные расходы сплошной и дисперсной фаз, [c.169]

    Вопрос о минимально необходимом расходе жидкости (плотности орошения Ь) и степени ее диспергирования при орошении газоходов нуждается в исследовании. [c.216]

    Здесь Ve, —объемный расход потоков сплошной и диспергированной фаз, отнесенный к 1 м сечения колонны, м /м час, [c.354]

    Расстояние между тарелками I, мм Расход диспергированной фазы [c.361]

    На рис. 2 представлена зависимость длины пути выгорания распыленной жидкой серы от среднего диаметра ее капель при различном коэффициенте расхода воздуха и скорости потока г = 35 м/с. С помощью этой зависимости можно установить размеры печи для сжигания серы или определить степень выгорания серы в реакционном объеме. На рисунке использован критический средний диаметр капель серы при 6р< б р в печи будет иметь место полное выгорание диспергированной жидкой серы, а при бо > бкр — неполное. [c.39]

    Разработана технология гидрогенизации нефтей и нефтяных остатков в диспергированном состоянии над псевдоожиженным катализатором при невысоком давлении. Основная идея заключается в облегчении контакта сырья с катализатором, с тем чтобы ускорить гидрирование трудно гидрируемые высокомолекулярные продукты образуют кокс, который выжигается при регенерации катализатора. Расход водорода 1,04— 1,36% на сырье. При гидрогенизации 50%-ного мазута выход автомобильного бензина 30%, дизельного топлива 58%, газа 8,5%, кокса 4,8%. При возврате в цикл фракций >240 °С выходы соответственно 21,0, 61,0, [c.54]

    Сопоставляя эффективность ультразвукового диспергирования применительно к производству эмалей, П. И.Ермилов [5] отмечает, что технике-экономические показатели ультразвуковых диспергаторов могут превосходить показатели для машин других типов. Так, съем готовой эмали на основе цинковых белил и железного сурика на шаровой мельнице составляет 72,3 кг/ч, на трехвалковой краскотерочной машине 27 кг/ч, а на ультразвуковом диспергаторе 250 кг/ч. При этом площадь, занимаемая ультразвуковой установкой, в четыре раза меньше, чем шаровой мельницей, а расход электроэнергии на 1 т эмали составляет соответственно 34 и 71 кВт-ч. Качество продукта, полученного при ультразвуковой обработке, выше, так как ниже его дисперсность. Например, ультразвуковая обработка готовой эмали, приготовленной на пентафталевом лаке, с цинковыми белилами, привела к уменьшению дисперсности пигмента с 25 до 5 мкм и улучшению качества эмали. [c.118]

    Не следует думать, что энергия, требуемая для проведения этих процессов, расходуется только на развитие межфазной поверхности. В реальных условиях большая доля энергии затрачивается на преодоление внутреннего трения и приведение жидкости в движение. Для совершения элементарных актов диспергирования жидкостей необходимо реализовать в микрообъемах такую гидродинамическую обстановку, в результате которой возникали бы необходимые растягивающие и сдвигающие напряжения, приводящие к образованию и отрыву капель. Поэтому, если иметь в виду как цель получение дисперсии с узким распределением частиц заданного размера, акустические и электрические методы представляются предпочтительными. [c.121]

    Отделение газа от жидкости после тарелки зависит от расхода жидкости. При малых расходах, когда слой сильно диспергирован, газ отделяется по всему рабочему сечению тарелки. С увеличением расхода жидкости и плотности слоя все большая часть газа отделяет- [c.359]

    Структура газо-жидкостного слоя на тарелке зависит от нагрузок обеих фаз. Так, при малых нагрузках по жидкости слой сильно диспергирован при умеренных нагрузках барботажный слой более плотный. При высоких расходах по жидкости (>70 м /м) наблюдается ячеистая структура пены. [c.360]

    Газовые включения в виде микропузырьков воздуха также ухудшают условия работы масляных систем газотурбинных двигателей. Отрицательное влияние воздушных пузырьков в масле проявляется в уменьшении пропускной способности масляных фильтров (из-за блокирования пузырьками поверхности фильтрующих элементов), создании воздушных пробок в масляных каналах, возникновении местных разрывов масляной пленки на смазываемых поверхностях, уменьшении охлаждающей способности масла (из-за низкой теплоемкости диспергированного в нем воздуха), повышении расхода масла (вследствие выброса пены через дренажные и суфлирующие приспособления). Кроме того, кислород воздуха интенсифицирует процессы окисления, что увеличивает загрязненность масла органическими веществами. [c.63]


    Смеситель состоит из лопастного ротора /, статора 2 с цилиндрическими каналами и дисковых ножей 3 для предварительного измельчения твердой фазы и дополнительного воздействия на выходящую из статора смесь. Зазор между ротором и статором составляет 0,2—0,25 мм, что при скорости вращения ротора 1750—10 000 об/мин обеспечивает в большинстве случаев хорошее диспергирование и смешивание за один проход. Высокая эффективность смесителя определяется тем, что при его работе почти вся энергия расходуется на создание в жидкости напряжений сдвига и удара. Когда же пропеллерная или дисковая мешалка работает в емкости, то значительная часть энергии расходуется на приведение жидкости в движение. При этом способе могут смешиваться жидкости с вязкостью до 15 000—20 000 спз, причем во избежание застывания производят обогрев трубопровода. Время пребывания жидкости в смесителе регулируют изменением сечения трубопровода на выходе. Фирма выпускает смесители, характеристика которых приведена в табл. 11 [37]. [c.28]

    Щелочь необходимо подавать и после ЭЛОУ для нейтрализации солей кальция и магния, расход ее регулируют в зависимости от концентрации хлоридов в обессоленной нефти и в конденсатной воде на АВТ, если их концентрация выше 30 мг/л, то увеличивают расход щелочи и пара. При остаточном содержании солей в нефти ниже 10 мг/л расход щелочи обычно составляет 1-5 г/т нефти. Для улучшения диспергирования в сырой нефти щелочь подают в виде 1-4 ного водного раствора. [c.140]

    При многоступенчатой перекрестной схеме сточная вода на каждой ступени контактирует со свежим экстрагентом, что приводит к повышенному расходу экстрагента. При ступенчато-противоточной схеме каждая ступень включает перемешивающее устройство для смешения фаз и сепаратор (отстойник) для их гравитационного разделения или центробежный сепаратор, обладающий более высокой разделительной способностью. При непрерывно-противоточной многоступенчатой экстракции вода и экстрагент движутся навстречу друг другу в одном аппарате, обеспечивающем диспергирование экстрагента в воде, а разделение [c.338]

    Контактирование сырья с катализатором. Перемешивающие устройства, применяемые в реакторах, заметно влияют на степень эмульгирования. Они определяют интенсивность циркуляции эмульсии в реакторе, и, тем самым, среднее число проходов сырья через импеллер за время пребывания сырья в реакторе. Большинство импеллеров на промышленных реакторах имеет привод от электродвигателей, поэтому скорость их вращения постоянна. Некоторые импеллеры, однако, приводятся от турбины или через редуктор, поэтому у оператора имеется возможность изменять число оборотов. В работе [4] сообщается, что при 620 об/мин получается алкилат хорошего качества. Авторы полагают, что высокая степень диспергирования вызвала снижение расхода свежей кислоты на действующей установке с 217 до 77 кг на 1 м алкилата. [c.220]

    В указанных областях применения лопастные мешалки обеспечивают хорошее перемешивание при небольшом расходе энергии. Лопастные мешалки непригодны для быстрого растворения, тонкого диспергирования, а также для получения суспензий, содержащих твердую фазу большой плотности. [c.357]

    Наиболее эффективными устройствами для диспергирования газа в жидкости считаются турбинные открытые мешалки с прямыми и изогнутыми лопастями. Такая мешалка создает в аппарате два циркуляционных контура газожидкостной смеси (над мешалкой и под ней). Пропускная способность по газу реакторов с мешалкой в свободном объеме ограничена режимом захлебывания, когда при достижении некоторого расхода газа, подаваемого в аппарат, избыточное его количество не диспергируется в жидкости, а, обтекая мешалку, поднимается вверх вдоль вала. При перемешивании наиболее эффективными турбинными мешалками открытого типа этот режим наступает при скорости газа в свободном сечении аппарата 0,05—0,1 м/с. [c.11]

    Допустим, что в него входят сплошная и дисперсная фазы в количестве + Уд с некоторой удельной поверхностью а д-Так как в аппарате за счет диспергирования происходит увеличение поверхности, то на выходе при том же расходе жидкостей V будем иметь поверхность > a Q. Если скорость роста удельной поверхности обозначить через Wa, то за период времени dt межфазная поверхность в реакционном объеме увеличится на величину [c.65]

    Правильно сконструированная установка для абсорбции газов должна работать с максимальной возможной эффективностью и пропускной мощностью и с наименьшими капитальными и эксплуатационными расходами. Абсорбционные установки можно разделить на две группы. Первая группа установок работает по принципу диспергирования пузырьков газа в жидкости в поточной либо в многоступенчатой системе, тогда как вторая группа — по принципу диспергирования капелек жидкости в газе. Почти все установки за исключением одноступенчатого абсор- бера действуют на основе противоточнои абсорбции, что показано в виде диаграммы на рис. П1-2. Однако некоторые скрубберы работают в режиме параллельных потоков. Ниже будет дан расчет работы поточной установки. [c.111]

    Колонна экстракции 2 оборудована двойными перфорированными тарелками. Установлено, что для системы диэтиленгликоль — ароматические — неароматические углеводороды вид диспергированной фазы на эффективность и производительность колонны существенного влияния не оказывает. Выбор в качестве диспергированной фазы диэтиленгликоля был обусловлен меньшим его расходом при зано с-нении системы. Удельная нагрузка колонны по растворителю 50 м /(м2-ч) [58, с. 342—355]. Эффективность колонны соответствует 7—9 теоретическим ступеням разделения. [c.55]

    Механическую прочность методом толчения определяли по ГОСТ 13347—67. В соответствии с ГОСТ под твердостью кокса подразумевается поверхностная энергия, которая определяется как работа поверхностного диспергирования, приходящаяся па единицу вновь образованной поверхности раздела. Кусковой кокс, используемый в шахтных печах, должен быть не только прочным, но ы устойчивым к действию высоких температур. При недостаточной механической прочности и малой термической стойкости в печи образуется значительное количество мелочи. Повышение количества мелочи в столбе шахтовых материалов вызывает неравномерное их распределение и канальный ход печи. По некоторым данным, увеличение в коксе фракции 25—0 мм на 1,0% ухудшает газопроницаемость шихты примерно на 5,0% и увеличивает расход кокса на 1,5%. [c.191]

    Вспениватели стабилизируют эмульсию диспергированных пузырьков воздуха в водной среде и повышают устойчивость пены. В основном это спиртосодержащие реагенты отходов производства синтетических каучуков и спиртов (расход 0Д5-0.2 кг/т исходного шлама). [c.37]

    Еще более сложно оптимизировать работу бисерных мельниц при изменении реологических характеристик перерабатываемого материала. Управляющими воздействиями в процессе эксплуатации могут быть число оборотов ротора, количество, размер и плотность мелющих тел, а также продолжительность пребывания материала в зоне диспергирования, определяемая расходом диспергируемой пасты через бисерную мельницу [82]. На практике же можно использовать только изменение расхода диспергируемой пасты. Обычные бисерные мельницы при существенных изменениях реологических свойств диспергируемых паст слабо реагируют даже на большие изменения подачи пасты, а изменение подачи в сторону уменьшения расхода вызывает воронкообразное расположение мелющих тел в контейнере мельницы, что приводит к ухудшению диспергирования. [c.113]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    Для реализации такого способа диспергирования жидкости автором разработаны две конструкции каскадных форсунок иристешюго типа, предназначенных для высоких (90 м /ч и более) и средних (8—20 м /ч) расходов. [c.256]

    По мере заполнения сборной емкости цеолитную массу перекачивают в отстойную емкость (на схеме сборная и отстойная емкости не указаны), снабженную подвижным перемешивателем. Перед отстаиванием суспензии прекращают подачу воздуха и вынимают перемешиватель из емкости. Во время отстаивания суспензия расслаивается относигельно крупные частицы — грубодисперсный слой (размер частиц до 5—6 мк) оседает вниз в дальнейшем его повторно используют для диспергирования. Верхний — тонкодисперсный — слой откачивают в сборник 5, а оттуда — в рамную мешалку б, в которой его доводят до рабочей концентрации. Раствор из мешалки расходуется в качестве цеолита-наполнителя в процессе формования катализатора. [c.106]

    При газлифтном и компрессорном способе добычи нефти химические реагенты, подаваемые в скважину, должны способствовать повышению к. п. д. газлифтного подъемника. Структуры, обеспечивающие минимальный удельный расход рабочего газообразного агента, а следовательно, высокий к. п. д. подъемника, создаются механическим диспергированием газа в потоке добываемой нефти. Устойчивость подобных диспергированных смесей достигается добавлением пенообразующих поверхностно-активных веществ, которые формируют достаточно прочные границы раздела газ — нефть при небольших значениях поверхностного натяжения. Этот метод приемлем лишь в безводных и малообводненных (до 5%) скважинах либо, наоборот, в сильно обводненных (95 %) газлифтных скважинах. [c.29]

    При проектировании и эксплуатации системы подготовки нефти на промыслах необходимо выбирать тип деэмульгатора, место и способ ввода его в обрабатываемую среду с учетом особенностей технологического объекта и свойств эмульсии. В условиях незначительной турбулентности газоводонефтяного потока в промысловых коммуникациях и технологическом оборудовании рекомендуется химический реагент вводить не только на установках подготовки, но и непосредственно в скважинах или групповых установках. Данный ввод реагента обеспечивает равномерное распределение его и сокращение удельного расхода. Этот метод получил широкое распространение на промыслах Татарии. Получен значительный экономический эффект. При чрезмерно высоком уровне турбулентности в потоке происходит как бы дополнительное диспергирование, и ранний ввод химического реагента может привести к повышению устойчивости эмульсии. [c.40]

    Выход глицерина Наибольшее положительное влияние на 1 оказывает модуль водорода вероятно, увеличение расхода водорода усиливает его диспергирование в данной реакционной системе. Следующим по силе является влияние взаимодействия температуры реакции и концентрации катализатора знак минус перед этим членом означает, что для увеличения 1 при более высокой температуре требуется добавлять меньше катализатора, и наоборот. Парное взаимодействие ХвХа со знаком минус свидетельствует, вероятно, о том, что с увеличением дозировки сокатализатора следует уменьшать давление водорода, и наоборот. Из дальнейшего анализа следует, что давление водорода оказывает положительное влияние на выход глицерина повышение температуры немного уменьшает выход глицерина, а повышение избытка Са(ОН)г увеличивает его, но в незначительной степени (из-за ма- [c.134]

    За объем катализатора должен быть принят объем диспергированной в реакторе кислоты, так как остальная ее часть, попадающая в зону отстоя или не сбразсвавшая эмульсии из-за недостаточно интенсивного иеремешивания, фактически не будет катализировать алкилирование. Полнота протекания реакции обеспечивается при длительности пребывания углеводородной фазы в реакторе для фтористоводородного алкилирования 5—10 мин, для сернокислотного— от 20 до 30 мин. При этом объемное соотношение катализатор— углеводород иринимается равным 1 1. Это объемное соотношение установлено исходя из наличия в реакторе однородной эмульсии углеводородов в кислоте. Увеличение относительного объема кислоты не вредит процессу, но увеличивает вязкость смеси и соответственно расход энергии на иеремешивание уменьшение доли кислоты приводит к образованию эмульсии ее в углев .дороде, ухудшению качества алкилата и увеличению расхода катализатора. [c.334]

    При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротре-щнн). Поэтому по мере измельчения прочность частнц растет, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к больному расходу энергии иа дальнейшее пх диспергирование. [c.97]

    Допустимый расход диспергированной фа зы через единицу сечерия экстракцион ной колонны, м /(м ч) [c.261]

    Все гравитационные экстракторы отличаются простотой конструкции, обусловленной отсутствием движущихся частей. Соответственно стоимость этих аппаратов и расходы, связанные с их эксплуатацией, относительно невелики. Однако в большинстве случаев (исключая процессы обработки сргстем жидкость — жидкость с низким межфазным натяжением) интенсивность массопередачи в гравитационных экстракторах низка. Это объясняется тем, что для систем жидкость — жидкость разность плотностей фаз значительно меньше, чем для систем пар (газ) — жидкость и обычно педостаточна для. тонкого диспергирования одной жидкой фазы в другой, необходимого для создания значительной поверхности контакта фаз. Гравитационные экстракторы мало пригодны для работы с большими соотношениями расходов фаз. [c.543]

    TOB. в частности, в опытах по диспергированию пленок тюменской товарной нефти в качестве диспергаторов применялся эмульгатор пленочной нефти ЭПН-5 [19]. Рабочий раствор диспергента с концентрацией 0,1-3% и с температурой 20-60°С готовили на месте испытаний перемешиванием его со-ставляющих — оксифоса и желатина — в емкости автоцистерны АЦ-40 (131) подготовленный в режиме циркуляции в течение 5-7 мин готовый раствор подавали на обрабатываемый участок (давление 0,15-0,175 МПа на выходе насоса) по пожарному рукаву через ручной ствол-распылитель типа P -6. Расход 100% раствора диспергента в экспериментах составлял 0,06-1,3 л/л нефти. Сразу после обработки диспергентом поверхность очищалась и появлялась пенд/. Затем пена постепенно исчезала, и в течение двух часов поверхность воды вновь покрывалась сплошной пленкой или эмульсией, толщина которой составляла 70-80% от первоначальной толщины. Последующие несколько обработок диспергентом (всего выполнялась пятикратная обработка водной поверхности) приводили к постепенному уменьшению площади и толщины нефтяной пленки, и на поверхности воды оставалась тонкая радужная пленка, не исчезающая при дальнейшей обработке. Наиболее эффективна очистка водной поверхности от нефтяной пленки при концентрации диспергента до 0,6% и температуре до 50°С [19]. [c.18]


Смотреть страницы где упоминается термин Диспергирование расходы: [c.137]    [c.303]    [c.197]    [c.148]    [c.132]    [c.217]    [c.182]    [c.102]    [c.79]   
Крашение пластмасс (1980) -- [ c.287 , c.288 ]

Крашение пластмасс (1980) -- [ c.287 , c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование

Сравнительный анализ пригодности различных красящих веществ с учетом расходов на диспергирование



© 2025 chem21.info Реклама на сайте