Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение газов глубоким охлаждением коксового газа

    Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]


    Разделение газов, содержащих водород, методом фракционированной конденсации с применением глубокого охлаждения. Коксовый газ представляет собой смесь сложного состава. Ниже приведен примерный состав коксового газа и температуры кипения отдельных компонентов газовой смеси при 1 ат. [c.240]

    Установки для разделения воздуха и получения чистого азота (99,99% N2) сооружаются на заводах синтеза аммиака, получающих азото-водородную смесь глубоким охлаждением коксового газа или же водород путем электролиза воды. Азот такой же чистоты необходим при очистке конвертированного газа жидким азотом (стр. 170). [c.75]

    Технологический процесс коксования состоит из трех основных стадий 1) подготовка угольной шихты и ее загрузка в коксовую камеру 2) коксование, отбор паро-газовой смеси и выгрузка кокса и 3) переработка паро-газовой смеси. Последняя стадия включает пять основных операций а) охлаждение паро-газовой смеси с конденсацией и последующим отделением смолы и надсмольной воды б) улавливание аммиака в) поглощение ароматических углеводородов (сырой бензол) с последующей их отгонкой и разделением г) глубокое охлаждение несконденсировавшегося газа и выделение фракций д) переработка смолы с получением индивидуальных углеводородов или их смесей. [c.73]

    Технологический процесс разделения коксового газа идет под давлением 12—13 ати, а для покрытия потерь холода имеется отдельный холодильный азотный цикл. До поступления в блок глубокого охлаждения коксовый газ очищается от сероводорода, освобождается от бензола, от углекислоты и охлаждается до —45° С. [c.336]

    Получение азото -водородной смеси разделением коксового газа методом глубокого охлаждения. Коксовый газ, получаемый при коксовании углей без доступа воздуха при температуре 900—1000° С, имеет следующий состав (в объемн. %) 2-3% СОа 0,4—0,8% 0 5—8% СО 55-62% Н3 24-28% СН4 2-4% С Н2 3-5% N3. [c.8]

    Использование температур, соответствующих глубокому охлаждению, позволяет разделять газовые смеси путем их частичного или полного сжижения и получать многие технически важные газы, например азот, кислород и другие газы (при разделении воздуха), водород из коксового газа, этилен из газов крекинга нефти и т. д. Эти газы широко используются в различных отраслях промышленности. Так, современная холодильная техника обеспечивает значительную интенсификацию доменных процессов черной металлургии путем широкого внедрения в них кислорода. Весьма перспективно применение дешевого кислорода для интенсификации многих химико-технологических процессов (производство минеральных кислот и др.). [c.646]


    Как было указано, в технике глубокое охлаждение используется преимущественно для разделения газовых смесей (воздуха, коксового газа и др.). Для разделения газов при низких температурах применяются следующие методы  [c.678]

    Многопоточные теплообменники (фиг. 164, б, в) применяются в установках для разделения многокомпонентных смесей (например, коксового газа, водяного газа и др.). Для лучщей передачи тепла теплообменники глубокого охлаждения выполняются витыми поперечноточными, при этом поток газа, омывающий трубки снаружи, направлен перпендикулярно к трубкам (фиг. 164, г, д, е). Для увеличения коэффициента теплоотдачи со стороны потока, проходящего по межтрубному пространству, в последнем делаются перегородки. [c.372]

    В табл. 21 приведен примерный состав фракции, получаемых при разделении методом глубокого охлаждения газа пиролиза, а в табл. 22 — состав этиленовой и метановой фракций коксового газа. [c.138]

    Примерный состав фракций коксового газа, полученных при разделении методом глубокого охлаждения [c.138]

    Принципы получения глубокого холода. Глубокое охлаждение предполагает охлаждение до температур ниже минус 100 °С. Техника глубокого охлаждения применяется для сжижения и разделения газов, например воздуха, коксового газа, природных газов и т. д. Попутно с получением кислорода методами глубокого охлаждения получают редкие газы аргон, гелий, неон, криптон, ксенон. В технике глубокого охлаждения применяют два основных метода получения низких температур I) расширение газов без совершения внешней работы —дросселирование (с использованием эффекта Джоуля — Томсона) 2) расширение газов с совершением внешней работы в детандере. [c.291]

    Коксовый газ до поступления в агрегат разделения методом глубокого охлаждения должен быть очищен от примесей влаги, нафталина, сероводорода, двуокиси углерода и окислов азота. [c.14]

    Использование температур, соответствующих глубокому охлаждению, позволяет разделять газовые смеси путем их частичного или полного сжижения и получать многие технически важные газы, например азот, кислород и другие газы (при разделении воздуха), водород из коксового газа, этилен из газов крекинга нефти и т. д. Так, современная холодиль- [c.685]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Взрывобезопасность разделения горючих газов методом глубокого охлаждения. Эти процессы широко применяются при переработке коксового газа, продуктов высокотемпературного пиролиза и конверсии насыщенных углеводородов. За последние годы получил значительное распространение высокоэффективный метод промывки жидким азотом технического водорода, используемого для производства аммиака. При этом удаляются остатки окиси углерода — каталитического яда этого процесса. [c.84]

    Метод глубокого охлаждения дает возможность использовать для синтеза аммиака любые газовые смеси, содержащие достаточное количество водорода или относительно бедные водородом смеси, содержащие ценные компоненты для синтеза других продуктов. В последнем случае водород при разделении смеси является отходом. Например, при разделении коксового газа целевым продуктом является азото-водородная смесь, а побочными — этиленовая и метановая фракции. Наоборот, щ)и разделении газов крекинга нефти целевыми продуктами являются олефины, а побочными — парафины и метано-водородная фракция, которая может быть использована для получения аммиака. В промышленности низкие температуры для разделения газовых смесей применяются, как правило, при малых значениях коэффициентов разделения или в тех случаях, когда выделение из смеси ее отдельных компонентов в иных условиях невозможно или экономически нецелесообразно. [c.194]

    Сырьем для получения аммиака служит смесь азота и водорода. Водород для этой смеси получают разными способами, из которых наиболее распространенными являются конверсия природного газа (метана) и других углеводородных газов комплексная переработка природного газа в ацетилен и синтез-газ фракционное разделение горючих газов, в частности, коксового, методом глубокого охлаждения газификация твердого и жидкого топлива с последующей конверсией окиси углерода электрохимический способ получения водорода. [c.113]


    Процессы конденсации паров и газов применяются при химической переработке твердого топлива (выделение смолы из коксового газа и газов полукоксования) в производстве фосфора, спиртов, аммиака при разделении на компоненты коксового газа, газов крекинга нефти, крекинга метана и других методом охлаждения и фракционированной конденсации при получении азота и кислорода глубоким охлаждением воздуха при освобождении газов от паров воды во многих производственных процессах и т. д. [c.115]

    Следует заметить, что эти образцы были получены с завода, на котором азотноводородная смесь получается методом глубокого охлаждения с выделением водорода из коксового газа, промывкой его жидким азотом в агрегатах разделения коксового газа. Вследствие неудовлетворительного состояния оборудования в азотноводородную смесь попадает небольшая примесь коксового газа. Однако благодаря использованию продуцирующего предкатализа колонны синтеза работают на этом заводе с высокой производительностью по нескольку лет. С другой стороны, из-за отравления ката лизатора и высоких температурных режимов (550—650°) колонны предкатализа работают по нескольку месяцев. [c.145]

    Поглощение СОг аммиачной водой применяется прежде всего для предварительной очистки коксового газа перед разделением его методом глубокого охлаждения. Обычно эти установки работали при давлении 10—25 ати. В новейших установках давление не превышает 15 ати, что позволяет получить водород более высокой чистоты. В особых случаях, налример яри получении раствора карбоната аммония, предназначенного для дальнейшей переработки в сульфат аммония, СОг поглощается аммиачной водой под атмосферным давлением. Особое внимание следует уделять улавливанию аммиака из газа, выходящего из абсорбера. [c.345]

    Составы фракций при разделении коксового газа методом глубокого охлаждения с применением детандерного эффекта [c.268]

    Зильберман Д. Э. Замена фосфора в текущем контроле метановой фракции [при разделении коксового газа методом глубокого охлаждения]. Зав. лаб., 1941, 10, № 6, с. 594—596. 7264 [c.276]

    Содержание этилена в коксовом газе обычно не превышает 1,5— 2,5% объемн. Извлечение этилена из коксового газа при таких малых концентрациях его нецелесообразно. Однако при разделении коксового газа методом глубокого охлаждения с целью получения азото-водородной смеси получается в качестве побочного продукта этилен-этановая фракция. Этилена в этой фракции содержится 25— 32 %. Количество этилена в коксовых газах в связи с большим объемом коксохимического производства весьма велико. Если коксовый газ не подвергается разделению для получения Нг, то использование этого этилена, а также и пропилена, концентрация которого достигает 0,5% мол., может оказаться экономически целесообразным, способом непосредственного химического связывания, без предварительного выделения концентрированной фракции. [c.20]

    Техника глубокого охлаждения все шире применяется для сжижения и разделения газов, а именно для разделения коксового газа, попутного нефтяного газа, природных и искусственных газов. [c.364]

    Предварительно очищенный от бензола, нафталина, окислов азота, аммиака, цианистых и сернистых соединений, а также двуокиси углерода и водяных паров коксовый газ направляется на разделительную установку. Разделение коксового газа методом глубокого (низкотемпературного) охлаждения основано на большой разнице температур кипения компонентов газа. [c.225]

    Практически для разделения коксового газа путем глубокого охлаждения используют метод ступенчатой (фракционированной) конденсации. Обычно из коксового газа выделяют 3—4 фракции каждая фракция конденсируется при охлаждении газа до определенной температуры. [c.225]

    Содержание в коксовом газе дициана (СН)2 настолько ничтожно, что об условиях его образования распространяться нет никакой нужды. Большего внимания заслуживает наличие в коксовом газе некоторого количества окислов азота. Хотя это количество также чрезвычайно мало и выражается обычно единицами промиль (тысячными долями процента), оно мюже приводить к большим неприятностям. При глубоком охлаждении коксового газа для получения водорода (для синтеза аммиака) образующиеся под влиянием окислов азота так называемые азотистые смолы забивают трубки теплообменников в аппаратах для разделения коксового газа, значительно сокращая этим период их непрерывной работы. Кроме того, некоторые непредельные соединения коксового газа, например циклопентадиен, реагируя с окислами азота, дают вещества, разлагающиеся при известных условиях со взрывом, что служит причиной аварий в разделительной аппаратуре заводов синтеза аммиака. [c.231]

    Газ, содержащий 85-90% В. и 10-15% др. газов, гл. обр. углеводородов, получают в кач-ве побочного продукта на нефтеперерабатывающих заводах (см. Газы нефтепереработки). Из газа коксовых печей, содержащего 55-60% В., последний выделяют методом фракц. конденсации при глубоком охлаждении (см. Газов разделение). [c.401]

    Для производства дихлорэтана используются этен, получаемый каталитическим разложением паров этилового спирта, эте-новые фракции углеводородных газов, получаемые в результате разделения методом глубокого охлаждения газов пиролиза керосиновых дестиллатов или коксового газа, а также этан-этеновая фракция, получаемая в результате фракционирования газов, получаемых при переработке нефтяного сырья. [c.254]

    Разделение коксового газа для получения чистой азотоводородной смеси является сложным процессом техники глубокого охлаждения. При этом водород приходится выделять из мпогокомпонентной газовой смеси, какой является коксовый газ. Присутствие в коксовом газе компонентов, имеющих как высокие, так и низкие температуры конденсации, усложняет технологический процесс. В процессе разделения коксового га за (Используется разность температур конденсации В10-дорода и других компонентов газовой смеси. Для выделения водорода из коксового газа необходимо перевести в жидкое состояние все его компоненты, кроме Нг. Компоненты коксового газа после их сжижения отводятся из агрегата в виде отдельных фракций. Поэтому данный метод разделения газовых смесей называется фракционированной конденсацией. [c.29]

    Разделение коксового газа глубоким охлаждением служит методом получения водорода или азотоводородной смеси для синтеза аммиака. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты являются ценным сырьем органического синтеза. Методом глубокого охлаждения можно перевести в жидкое состояние все компоненты коксового газа, кроме водорода. Это видно по значениям температур кипения основных компонентов обратного коксового газа  [c.228]

    Азот, циркулирующий в системе в качестве холодильного агента и дозирующийся к газу, идущему на синтез аммиака, получается в отдельных установках методом разделения воздуха глубоким охлаждением. Полученный таким образом азот сжимается пятиступенчатым компрессором 3 до давления 200 атм, проходит предварительный азотный теплообменник 14 и аммиачный теплообменник 13, охлаждается до температуры — 45°С и поступает в аппарат разделения коксового газа. Здесь азот разветвляется на три потока, проходящие через теплообменники 21 (12), 22 (8) и 24 (7), где азот охлаждается этиленовой и окись-углеродной фракциями, а также азотом низкого давления. В теплообменнике 23 (9) азот высокого давления двух потоков охлаждается азотом низкого давления, идущего из испарителя. Часть азота высокого давления, охлажденного до температуры —135°С, дросселируется до 12 ати и дозируется к азотноводородной смеси, идущей на синтез аммиака, а остальная часть проходит теплообменник 25 (10) и 26 (И) и дросселируется до низкого давления в межтрубное пространство испарителя 19 (5). Далее азот проходит теплообменники 26 (11), 23 (9) и 22 (8), отдает свой холод свежепоступающему газу и уходит в газгольдер. Затем он снова сжимается до 200 атм и возвращается в систему. Расходуемый в системе азот (для получения газовой смеси На N2 = 3 1) непрерывно пополняется из воздухоразделительной установки. [c.115]

    Н2-14. Торочешников И. С. О получении этилена при разделении коксового газа глубоким охлаждением. Ж. химич. пром-ти , 1937, № 7, 510. [c.399]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    ПОЛУЧЕНИЕ АЗОТОВОДОРОДНОЙ СМЕСИ РАЗДЕЛЕНИЕМ КОКСОВОГО. ГАЗА МЕТОДОМ ГЛУБОКОГО ОХЛАЖДЕНИЯ [c.72]

    Тонкая очистка газа от двуокиси углерода необходима в технологических установках с глубоким охлаждением, например при промывке газа от окиси уЛхерода жидким азотом в производстве аммиака, при разделении воздуха, коксового и других газов. [c.418]

    Во втором разделе Получение технологического газа описаны различные методы производства водорода и синтез-газа каталитическая и высокотемнературная конверсия углеводородных газов, конверсия окиси углерода, газификация твердых и жидких топлив, разделение коксового газа методом глубокого охлаждения. [c.8]

    Очистка газов предусматривает удаление из промышленных или природных газов вредных и балластных прпмесей с том, чтобы очищенный газ был пригоден для трансиор-тирования, дальнейшей химической переработки и непосредственного использования. Газы очпщают от примесей, которые отравляют катализаторы, ухудшают качество продукции, вызывают коррозию п загрязнение аппаратуры. В ряде случаев, главным образом в процессах глубокого охлаждения, газ необходимо очищать от взрывоопасных примесей (например, удалять ацетилен при разделении воздуха, окись азота при разделении коксового газа, кислород при сжижении водорода). [c.213]

    В странах с развитой нефтеперерабатывающей, промышленностью сырьем для получения водорода может служить кре кинг-газ. Указанным выше способом разделения можно подвергать очистке также газовую смесь, получаемую конверсией. 11р1Иродного газа, и конвертированный водяной газ (после конверсии СО). В настоящее время все шире применяются методы получения этилена, который используется в органических синтезах. После выделения этилена газовую смесь направляют нг обогащение природного газа в тех случаях, когда он содержит большие. количества азота. В свое время гелий, применявшийся для наполнения дирижаблей, в США выделяли из природногс газа методом глубокого охлаждения. Этот метод, имеющий ряд иреи-муществ, исиользуется для самых разнообразных целей. В данной главе мы ограничимся рассмотрением его применительно к разделению коксового газа, используемого в качестве сырья для синтеза аммиака. [c.366]

Рис. 60. Схема блока разделения (разделительного агрегата) для получения азотоводородной смеси из коксового газа методом глубокого охлаждения Рис. 60. <a href="/info/332194">Схема блока разделения</a> (разделительного агрегата) для <a href="/info/514648">получения азотоводородной</a> смеси из <a href="/info/1709543">коксового газа методом</a> глубокого охлаждения
    При получении из конвертированного газа азотоводородной смеси остаточное количество окиси углерода может быть также удалено промывкой газа жидким азотом. Способ поглощения СО жидким азотом использовался ранее только нри разделении коксового газа методом глубокого охлаждения, основанным на использовании дроссельного эффекта. В настоящее время процесс поглощения СО жидким азотом (заменяющий медно-аммиачную очистку) широко внедряется в промышленность синтетического аммиака. Этому способствует современное развитие процессов конверсии углеводородных газов, а также газификации твердых и жидких топлив с применением кислорода, при производстве которого получаются в виде отхода значительные количества элементарного азота. [c.396]


Смотреть страницы где упоминается термин Разделение газов глубоким охлаждением коксового газа: [c.321]    [c.108]    [c.311]    [c.284]    [c.217]    [c.311]   
Курс технологии связанного азота (1969) -- [ c.95 , c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Глубокое охлаждение коксового газа

Коксовый газ глубокое охлаждение

Охлаждение коксового газа

Получение азото-водородной смеси разделением коксового газа методом глубокого охлаждения

Разделение воздуха и производство азото-водородной смеси из коксового газа методом глубокого охлаждения

Разделение газов

Разделение газов глубоким охлаждением

Разделение газов глубоким охлаждением коксового газа и Блоки разделения воздуха

Разделение коксового газа

Разделение коксового газа методом глубокого охлаждения



© 2025 chem21.info Реклама на сайте