Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсность анализ, оптические методы

    А. ОСОБЕННОСТИ ОПТИЧЕСКИХ СВОЙСТВ ДИСПЕРСНЫХ СИСТЕМ И ОБЩИЕ ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ПОВЕРХНОСТНЫХ СЛОЕВ И ДИСПЕРСНОСТИ [c.245]

    Суспензии представляют собой системы Т/Ж. Размеры твердых частиц в суспензиях 0,1 мкм< г< 10 мкм. Частицы с меньшей степенью дисперсности обычно быстро оседают. Дисперсность суспензий можно определить с помощью микроскопического анализа (оптический микроскоп, электронный микроскоп) или с помощью седиментационного анализа. Так же как и коллоидные растворы, суспензии могут быть получены конденсационным или агрегационным методом. При этом процессы проводят так, чтобы получить кристаллики (или сросшиеся кристаллики) соответствующей степени дисперсности. [c.455]


    Оптические методы анализа дисперсности [c.392]

    Нефелометрией называют оптический метод анализа, который заключается в измерении интенсивности света, рассеянного дисперсной системой. Теоретической основой нефелометрии является уравнение Рэлея (24.1), которому придают форму [c.395]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    Хотя для изучения даже тонких суспензий большое значение имеет седиментационный метод [12], но в последнее время широкое значение приобретают оптические методы анализа тонкодисперсных систем путем измерения интенсивности рассеянного и отраженного света [21—23]. Применение находят также методы, основанные на измерениях растворимости и теплоты растворения [24], диффузионные [25], радиоактивные [26], рентгеновские и др. [27]. Большое распространение приобрели методы фильтрации воздуха через порошки [28, 29], особенно в цементной промышленности [30, 31]. Здесь следует указать также на метод Дерягина [32], по которому измерение удельной поверхности пористых и дисперсных тел производится по сопротивлению, оказываемому этими телами течению сильно раз- [c.538]

    Визуальный дисперсионный анализ проводится только при исследовании чрезвычайно грубодисперсных систем, как, например, при классификации щебня по размерам. С помощью кронциркуля и других измерительных приспособлений можно измерять размеры частиц, которые составляют не менее 5 мм. В то же время световой микроскоп позволяет исследовать частицы размером не более 0,5 мм. Таким образом, пределы дисперсности, измеряемой визуально и с применением оптических методов, не перекрываются. Для исследования промежуточной области дисперсности (от 0,5 до 5,0 мм) приходится обращаться к другим методам. Например, для анализа порошков используют ситовой анализ. Иногда можно применять обычную лупу, дающую увеличение примерно до 20Х. Из всех оптических методов только световая и электронная микроскопия позволяет исследовать наиболее широкий круг дисперсных систем как по дисперсности, так и по агрегатному состоянию фаз. [c.290]


    Наиболее эффективные методы исследования дисперсных систем — оптические и основанные на дифракции и интерференции пучка электронов, нейтронов и рентгеновских лучей. Для исследования структуры жидкости наиболее подходит рентгеновское излучение. Используют также электронные методы (в частности кондуктометрию), методы фракционирования (дробное осаждение, ступенчатую экстракцию, гель-проникающую хроматографию). Сочетание методов фракционирования с методами физико-химического анализа позволяет получать более полные сведения о строении ССЕ. [c.211]

    Это издание книги дополнено анализом гидравлики струйных форсунок, в нем развиты и уточнены закономерности течения, имеются новые данные о распределении жидкости в факеле центробежной форсунки, приведены теория распада пленки в пульсирующем газовом потоке, характеристики новых типов форсунок, оптический метод измерения дисперсности распыленной жидкости и др. [c.2]

    Кривая распределения частиц по размерам представляет собой фракционное их распределение по массе всех частиц. Поэтому результаты ситового анализа (фракции с г=40—80 мк) совместимы с результатами седиментометрического анализа. В отличие от оптического метода определения дисперсности с распределением по числу частиц седиментометрический метод позволяет оценить всю массу частиц дисперсной фазы. Поскольку смачивающиеся порошки применяют в виде суспензий, всякое изменение дисперсности порошка влечет за собой соответствующее изменение дисперсности в стабилизированной суспензии. Седиментометрический метод анализа регистрирует эти изменения с достаточной точностью. [c.86]

    Таким образом, если взять отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, оно будет равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц. Размер частиц в турбидиметрическом анализе не имеет такого значения, как в нефелометрии. Однако, если дисперсная система содержит частицы более 0,1 "к, появляются отклонения от закона Рэлея, что приводит к нарушению линейности градуировочного графика. Воспроизводимость результатов при определении веществ турбидиметрическим методом составляет 5%. [c.90]

    Для дисперсионного анализа порошков и суспензий широко используется полуколичественный метод сравнения. На предмет иое стекло наносят контрольный образец с известным размером частиц, затем на него помещают препарат исследуемой суспензии. Частицы образцов должны находиться в одной оптической плоскости. Анализ дисперсности сводится к определению отношения размеров контрольной и исследуемой частиц. [c.249]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Прн анализе порошков или суспензий микроскопическим методом препараты должны отвечать следующим требованиям 1) не содержать слишком большое число частиц, чтобы их контуры не накладывались 2) однако число частиц должно быть достаточным для правильного суждения о дисперсности (проба должна быть представительной) 3) частицы должны находиться в одной оптической плоскости 4) при приготовлении препарата не следует допускать седиментационного разделения системы — она должна быть тщательно перемешана. [c.393]

    Варианты анализа высокодисперсных систем уже рассмотрены нами в предыдущих главах. Они основаны на изучении молекулярно-кинетических и оптических свойств — диффузии, осмотического давления, среднего сдвига частиц, светорассеяния (нефелометрия, ультрамикроскопия), седиментационно-диффузионного равновесия (ультрацентрифуга), а также на применении методов электронной микроскопии и дифракции электронов. Эти методы дают сведения главным образом о среднем размере частиц. Для многих целей такая характеристика является достаточной, тем более что в коллоидных системах вариации дисперсности обычно не очень велики. [c.45]


    За последние годы широкое распространение получили водно-дисперсные препараты витамина А, усвоение которых организмом превосходит жирорастворимые препараты. С этой точки зрения они представляют определенный интерес, чем и объясняется необходимость их широкого промышленного выпуска. Кроме того, водорастворимые препараты витамина А обладают хорошей устойчивостью прн хранении, а методы их анализа предусматривают омыление навески, экстракцию неомыляемых и определение оптической плотности растворов или поре- [c.46]

    Микроскопия — единственный абсолютный метод измерения частиц [6], дающий непосредственную характеристику. размеров, формы последних и дисперсного состава исследуемой системы. Для получения статистически убедительной картины необходимо измерить несколько сотен частиц. Оптическая микроскопия позволяет определить размеры частиц с диаметром Стокса не менее 0,5 мкм. Разрешающая способность обычных оптических микроскопов равна 0,2 мкм в условиях работы с масляной иммерсией и при косом освещении синим светом с % = 455 мкм [9]. Точность анализа повышается при применении микроскопов с проекционными или телевизионными устройствами. Их разрешающая способность до 0,1 мкм, а увеличение — до 8000 раз [6, 14, 15]. Этот анализ позволяет определять содержание частиц данного размера, выраженное в процентах. Для практических целей целесообразнее получать распределение частиц по размерам в весовых процентах, для чего используют методы пересчета [15]. [c.31]

    Для определения дисперсности смачивающихся порошков пестицидов, их действующего начала и наполнителей наиболее простыми являются оптический и ситовой методы анализа, однако они имеют ряд существенных недостатков . Например, оптиче- [c.84]

    В курсе коллоидной химии принято рассматривать только те оптические методы, которые используются в дисперсионном анализе (анализе дисперсности) для определения размера и формы частиц, удельной поверхностп, концентрации дисперсной фазы. К зтнм методам относятся световая и электронная микроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.247]

    Из оптических методов исследования в коллоидной химии применяются те методы, с помощью которых можно проводить дисперсионный анализ, т. е. определять размер и форму частиц, удельную поверхность, концентрацию дисперсной фазы. К таким методам относятся световая и электронная м-икроскопия, методы, основанные на рассеянии лучей, двойном лучепреломлении и др. [c.111]

    Из других свойств дисперсных систем, в том числе газовых эмульсий, необходимо отметить оптические свойства Общее рассмотрение их (светорассеяние, светопропускание, поляризация света) подробно проведено в работах [249]. Исследования оптических свойств эмульсий типа жидкость — жидкость подробно обсуждаются в работах [17, 18]. В исследованиях Ван дер Ваардена [250] подробно рассмотрена связь дисперсности эмульсий с светопропусканием и рассеянием света, что позволяет применять оптические методы для дисперсного анализа. [c.114]

    Некоторые изоляционные порошки имеют размер частиц менее 40 мкм. В этом случае применяют микроскопический и седи-ментационный методы, подробно описанные в литературе [59]. Весьма удобными являются оптические методы седиментаци-онного анализа, основанные на законе Бугера-Бера. Нами предложен вариант оптического метода, основанный на использовании фотоэлектрического колориметра-нефелометра типа ФЭК-Н-57. Измерения этим прибором основаны на сравнении лучистых потоков, проходящих через эталонную и испытуемую жидкость. Замеряя мутность суспензии металлического порошка в этиловом спирте через определенные интервалы времени, можно оценить скорость оседания порошка, а следовательно н его дисперсность. В кювету нефелометра помещается проба порошка в 0,03 г, содержащая десятки миллионов частиц. Продолжительность измерений составляет 30 мин. При использовании микроскопического метода необходимо затратить несколько часов для замеров нескольких сотен частиц. [c.173]

    Термический анализ обычно применяют при наличии в руде минералов в виде тонкодисперсных или коллоидных образований, пленок, корочек, различных переходных разностей, трудно диагностируемых оптических методом. Необходимо учитывать, что несовершенство структуры и дисперсность вещества понижают температуру диссоциации многш минералов, изоморфные примеси могут изменить температуру начала нли окончание реакции и т. д. [c.256]

    Определение дисперсного состава суспензий, порошков, аэрозолей и других микрогетерогенных систем основано на разнообразных седиментометрических методах дисперсионного анализа. К ним относят отмучивание — разделение суспензии на фракции путем многократного отстаивания и сливания измерение плотности столба суспензии, изменяющейся вследствие седиментации частиц суспензии пофракционное (дробное) оседание метод отбора массовых проб — один из наиболее достоверных накопление осадка на чашечке весов электрофотоседиментометрия, основанная на изменении интенсивности пучка света, проходящего через столб суспензии, о чем судят по измерениям оптической плотности седиментометрия в поле центробежных сил, основанная на применении центрифуг. В целом методы седиментометрии охватывают диапазон дисперсности от 10" до 10 м, включающий коллоидные, микрогетерогенные и некоторые грубодисперсные системы. Однако каждый из методов ограничен более узкими пределами дисперсности частиц. [c.376]

    Для исследования причин нестабильности физических свойств синтетического кварца и факторов, влияющих на образование ростовых дефектов кристаллов, во ВНИИСИМС в 1957 г. на базе систематического анализа результатов лабораторных и опытнопромышленных циклов кристаллизации был оптимизирован процесс синтеза и совместно с технологами опытного производства разработаны вначале технологический регламент синтеза пьезокварца для серийного завода, а в дальнейшем — промышленные процессы получения всех разновидностей технического кристалло-сырья кварцевой группы. В распоряжение института поступили результаты опытов по синтезу кварца, проведенных на разнотипном автоклавном оборудовании объемом от 1 до 12 000 л в широком диапазоне физико-химических условий при температурах до 500 С и давлении до 280 МПа. Такое положение достаточно наглядно характеризует значительное расширение экспериментальных возможностей ВНИИСИМС в период отработки промышленного метода синтеза пьезокварца. Экспериментальные исследования показали, что пониженное качество кристаллов связано с захватом примеси коллоидно-дисперсной фазы, выделяющейся из раствора. Для производства кристаллов пьезокварца, удовлетворяющих по качеству требованиям радиопромышленности, были отработаны режимы кристаллизации, исключающие захват этой примеси. Выявлены и устранены также факторы, вызывающие образование трещин и включений в кристаллах, детально исследован механизм формирования ростовых дислокаций в кварце и их влияние на оптические свойства синтетического кварца. Результаты технологических исследований были сопоставлены с данными измерений внутреннего трения в кварце, проведенных [c.12]

    Проводя. физико-химический анализ смесей полимеров, следует учитывать и то обстоятельство, что результаты анализа зависят от метода исследования. Иногда, судя по результатам определения оптической плотности, считают, что смесь однофазна, но в то же время в электронном микроскопе обнаруживаются микрочастицы другого полимера. Причины этого были указаны выше. Смесь, имеющая один максимум механических потерь (что указывает на ее однофазность), может быть малопрозрачной, что указывает на наличие дисперсной фазы второго полимера. Такое положение имеет аналогию с результатами определения степени кристалличности полимеров, когда степень кристалличности одного и того же полимера зависит (и иногда значительно) от того, каким методом он был получен. Пример влияния метода исследования на фазовый состав смеси приведен в работе Разинской и Штаркмана с сотр. [167], обнаруживших однофазную структуру смеси П1 1МА и ПВХ по данным термомеханических испытаний и но данным ДТА и двухфазную по результатам определения оптической плотности и электронно-микроскопического исследования. В указанной работе на результаты исследования могло, правда, повлиять и различие в методах получения смесей для электронной микроскопии и для ДТА. [c.36]

    Столяровой и Яковлевым [51, 52] на полимерных порошках наиболее обстоятельно проверен метод седиментационной турби-диметрии. Для проведения анализа приготовляют суспензию испытуемого порошка полимера с концентрацией твердой фазы 100 мг л. В качестве дисперсионной среды используют жидкости с высокой диэлектрической постоянной, например дистиллированную воду, спирт и т. д. Оптическая плотность суспензии измеряется с помощью колориметра-нефелометра ФЭКН-57 со светофильтром № 5 длина волны падающего света 550 мк. Суспензию наливают в кювету (в кювете сравнения находится вода). За время т происходит оседание дисперсной фазы и оптическая плотность суспензии падает. Зависимость изменения оптической плотности от времени позволяет судить о скорости седиментации испытуемого порошка. [c.129]

    Многоцелевой спектрофотометр МР5-50Ь создан на основе спектрофотометра, в котором реализован метод молочного стекла , используемый для анализа дисперсных систем. Особенности и отличия метода молочного стекла и метода, используемого в приборе МР5-50Ь, от известного классического метода пропускания поясняются рис. 4.13. При измерении с помощью обычных спектрофотометров (р ис. 4.13а) световой шотак, попадающий на приемную площадку чувствительного элемента, состоит из диффузно рассеянного частицами взвеси интенсивностью /р и прошедшего через среду интенсивностью /п- Известно, что составляющая потока излучения, прошедшая через растворитель, не несет информации о структуре взвешенного вещества, в то время как диффузно рассеянная часть потока излучения /р является характеристикой анализируемого вещества [19]. Для данного случая измеренная оптическая плотность равна [c.161]

    Электронно-микроскоаический метод рекомендуется для измерения частиц от 10—5 до 0,001 мкм (6, 15, 181 он сложен в апцаратур-ном оформлении и трудоемок. Для характеристики поверхности и выявления дефектов структуры частиц и определения их толщины польззтотся методом реплик, т. е. на образец напыляют в высоком вакууме пленку тяжелого металла под углом [23]. Если применять специальные экраны и счетные устройства, этот метод не только пригоден для контроля других методов дисперсионного анализа, но и позволяет получить кривые распределения частиц по размерам. Источником ошибок, как и в оптической микроскопии, является агрегация частиц, которая усугубляется тем, что при электронной микроскопии имеют дело со значительно более дисперсными системами. Метод использовался во многих исследованиях красителей [24- 27]. [c.32]

    По данным фирмы Шелл дисперсность смачивающихся порошков точно не установлена, якобы из-за неопределенностей и несовершенства методов анализа (микроскопического, седимен-тационного и диффузного). При этом указывается, что при определении дисперсности оптическим микроскопом средний размер частиц смачивающихся порошков с высокой стабильностью суспензий должен составлять менее 5 мк. Такой тонкий помол, особенно для инсектицидов с низкой температурой плавления, может быть получен только в воздухоструйной мельнице. [c.84]


Смотреть страницы где упоминается термин Дисперсность анализ, оптические методы: [c.247]    [c.158]    [c.208]    [c.598]    [c.18]    [c.18]    [c.370]    [c.371]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.290 , c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные оптические

Методы оптические

Оптические методы анализа



© 2025 chem21.info Реклама на сайте