Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы измерения частиц

    Микроскопия — единственный абсолютный метод измерения частиц [6], дающий непосредственную характеристику. размеров, формы последних и дисперсного состава исследуемой системы. Для получения статистически убедительной картины необходимо измерить несколько сотен частиц. Оптическая микроскопия позволяет определить размеры частиц с диаметром Стокса не менее 0,5 мкм. Разрешающая способность обычных оптических микроскопов равна 0,2 мкм в условиях работы с масляной иммерсией и при косом освещении синим светом с % = 455 мкм [9]. Точность анализа повышается при применении микроскопов с проекционными или телевизионными устройствами. Их разрешающая способность до 0,1 мкм, а увеличение — до 8000 раз [6, 14, 15]. Этот анализ позволяет определять содержание частиц данного размера, выраженное в процентах. Для практических целей целесообразнее получать распределение частиц по размерам в весовых процентах, для чего используют методы пересчета [15]. [c.31]


    Определить кажущуюся плотность катализаторов опытным путем методически сложнее, чем насыпную плотность, поскольку нужно измерять ие только полный объем слоя навески катализатора, но и собственный объем самих частиц. Обычно в лабораторной практике используют прямые и косвенные методы измерения объема. Первые основаны на измерении объема жидкости, вытесняемого при погружении катализатора, а вторые — на измерении потери массы при гидростатическом взвешивании - или на измерении гидродинамических харак- [c.40]

    МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТИЦ [c.178]

    Определение кажущейся плотности с помощью ртути в полевых условиях и при массовых замерах нежелательно в виду токсичности последней. При измерении А для элементов слоя размером в 5 мм и выше (типа таблеток и гранул катализатора) ртуть можно заменить слоем из фракции 20—200 мкм речного песка [52]. При этом нужно следить, чтобы характер засыпки и ее последующее разравнивание при повторяющихся измерениях были одинаковыми. Контрольные опыты с телами правильной формы показали, что этот метод для частиц указанных выше размеров дает достаточно удовлетворительные результаты по воспроизводимости и точности измерений. [c.49]

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]

    Когда на состав системы могут оказывать влияние несколько реакций, вывод аналитических зависимостей, выражающих ошибку измеряемого логарифма константы ЗДМ, приводит к сложным формулам, непосредственный анализ которых затруднителен. В таких случаях прибегают к численным оценкам, например в форме таблиц [5]. Если метод измерения основан на определении логарифма равновесной концентрации одной из частиц, или самой равновесной концентрации, или растворимости осадка, то можно предложить следующий общий метод оценки ошибок констант. Форма математического аппарата этого метода не зависит ни от количества учитываемых реакций, ни от конкретных численных значений их стехиометрических коэффициентов. [c.172]


    Введение в гомогенный поток жидкости газа, являющегося дополнительным ее турбулизатором, должно изменить условия формирования диффузионного слоя у поверхности частицы и соответственно отразиться на коэффициенте массопереноса. Но такое изменение будет ощутимо только в том случае, если массоперенос лимитируется внешним сопротивлением. Экспериментально это было подтверждено [122] методом измерения диффузионного потока от анодной платиновой частицы диаметром и длиной 5 мм, помещенной в слой зернистого материала. Исследования проводились при следующих гидродинамических условиях О < Ке, < 13,8 О < Ке < 30. [c.76]

    В этой главе обсуждаются методы измерения температуры газа, скорости газового потока и точки росы, размеров проб газов, а также методы расчета некоторых параметров. Кроме того, будут рассмотрены основные методы определения размеров твердых частиц, так как детальное рассмотрение этого вопроса выходит за рамки настоящей книги. [c.58]

    В настоящее время неизвестны методы измерения шероховатости частиц, хотя влияние шероховатости на поведение частиц в газопроводе отмечалось неоднократно. Так, например, гладкие сферические частицы не вращаются в потоках, характеризуемых большим числом Рейнольдса, тогда как для шероховатых частиц наблюдается этот эффект. [c.223]

    Ввиду отсутствия резкого перехода от устойчивого состояния систем к неустойчивому, необходимо измерить скорость их флокуляции и сопоставить ее с теоретическими данными. Имеются два хорошо известных экспериментальных метода измерения скорости флокуляции эмульсии — на основе оптических свойств (мутность или рассеивание света) и метод счета частиц. [c.103]

    Процесс образования тумана при смешении газов используется в технике для измерения малых концентраций паров и, в частности, паров 50з. Сущность метода измерений состоит в том, что исследуемый пар переводят в фазу видимой аэрозоли (тумана), после чего, зная степень пересыщения и пропорции разбавления, рассчитывают исходную концентрацию ЗО . Появление тумана и его плотность измеряют фотоэлементом. Для образования тумана может использоваться подмешивание холодного воздуха или газа, вступающего в химическую реакцию с исследуемым веществом. Так, для содержащего ЗОз сухого воздуха могут использоваться водяные пары, приводящие к образованию аэрозолей серной кислоты. Добавка к дымовым газам аммиака приводит к образованию сульфата аммония ( ЫН4)2504, который при температурах ниже 100°С выделяется в форме кристаллической аэрозоли. Чувствительность метода относительно невелика, но может быть повышена до 10 — 10 мг/м при использовании метода подсчета импульсов света отдельных частиц, пролетающих через луч света. Импульсы поступают на фотоумножитель и регистрируются счетчиком. [c.229]

    Ориентация в потоке. В настоящее время этот метод ориентации в сочетании с измерением двойного лучепреломления разработан лучше других методов. Анизометрические частицы могут быть ориентированы, если они движутся в растворе в определенном направлении, а также при вытекании самой коллоидной дисперсии. Броуновское движение, напротив, непрерывно разориентирует частицы. Если градиенты скорости малы, то достигается только частичная ориентация, которая по мере возрастания ориентирующего воздействия увеличивается и при достаточно большом воздействии может стать полной. [c.31]

    Изучение рассеяния света важно для суждения о величине и форме частиц коллоидной дисперсности, которые слишком малы для непосредственного исследования их с помощью обычного микроскопа. На явлении рассеяния света основан ряд методов определения размера и формы частиц с использованием ультрамикроскопа, фотоэлектроколориметра, нефелометра и поляриметра. В ультрамикроскопе каждая частица обнаруживается в отдельности в виде светящейся точки или системы дифракционных колец. В остальных методах величина частицы оценивается на основании измерений интенсивности светового потока и степени поляризации в различных направлениях при рассеянии света в мутной среде. В совокупности эти методы дают возможность составить более или менее ясное представление и о форме частиц. [c.30]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]


    Существование некоторых веществ в водных растворах в виде частиц, образующихся при распаде молекул растворяемого вещества, доказывается результатами исследования водных растворов методами измерения давления насыщенного пара над раствором и осмотического давления и методами эбулиоскопии и криоскопии (см. 13 и 14). Экспериментально установлено, что осмотическое давление при 0°С 0,01 М водных растворов сахарозы, глицерина, этанола и других органических веществ (растворы которых не проводят электрический ток) составляет 0,23-105 Па. [c.278]

    Электрон, находящийся а жидком NHj, являясь согласно соотношению неопределенностей нелокализуемой частицей, образует вокруг себя полость радиусом 330 пм. Этот факт установлен несколькими независимыми методами (измерение плотности растворов, ЭПР). [c.399]

    Как уже отмечалось, реальные ВМС характеризуются некоторым усредненным значением М. При этом различные методы измерения дают разные числовые значения Действительно, усреднение свойств различных частиц, составляющих сложную систему, можно провести по-разному, в зависимости от того, какому свойству придается наибольшее значение. Рассмотрим наиболее грубый, но зато наглядный пример. Пусть полимер содержит П = 100 малых макромолекул с молекулярным весом М — 1000 и одну большую с Л11=100 000. Весовая доля каждой фракции Pi составляет, таким образом, 0,5. Каково среднее значение молекулярного веса, М Если мы хотим отразить величиной М среднеарифметический вес, приходящийся на одну частицу, то следует вычислить так называемый с р е д н е ч и с л о в о й вес Млг  [c.317]

    Как уже отмечалось, реальные ВМС характеризуются всегда величиной некоторой усредненной М. При этом различные методы измерения дают разные числовые значення М. Действительно, усреднение свойств различных частиц, составляющих сложную систему, мол<но провести по-разному, в зависимости от того, какому свойству придается наибольшее значение. [c.304]

    При движении в пневмотранспортере частицы могут вызывать заметный шум, особенно если они сравнительно крупные [20]. На этом явлении основан один из методов измерения расхода частиц [21]. Гос-белл [22] провел также измерения расхода частиц, исследуя вибрацию проволочного экрана, помещенного в пневматический транспортер муки. [c.107]

    Методы измерений с отбором проб являются более распространенными, чем можно ожидать. Трудность использования зондов, вводимых в поток, обычно состоит в том, что на их показания влияют и частицы, и газ. Таким образом, выделить влияние каждой из фаз затруднительно. Этот недостаток присущ и всем традиционным измерительным устройствам, таким, как анемометры, трубки Пито, термометры, показания которых зависят от изменения давления, температуры и теплообмена. [c.112]

    Исспедование влияния парофазных ингибиторов на заряд поверхности частиц оксида железа методом измерения дзета потенциала 29 220 [c.36]

    ДИСПЕРСИОННЫЙ АНАЛИЗ, совокупность методов измерения размеров частиц дисперсной фазы (или пор в случае тонкопористых тел). Определяют также дисперсность, или удельную поверхность, дисперсной системы, т.е. отношение общей площади межфазной пов-сти к объему (или массе) дисперсной фазы. Существующие методы Д. а. можно разделить на три группы 1) методы измерения параметров отдельных частиц (линейных размеров, массы и т. п.) с послед, статистич. обработкой результатов большого числа измерений (возможно применение автоматизир. систем) 2) методы, основанные на мех. разделении дисперсной системы на неск. классов по крупности частиц 3) методы, основанные на изучении св-в ансамбля частиц (ансамбля пор). [c.78]

    Д. К- Осипов Методы измерения концентраций сажистых частиц [c.67]

    В экспериментальной практике применяются различные методы измерения концентраций сажистых частиц в воздухе И в газовых выбросах котельных установок, основными из которых являются , [c.67]

    Методы измерения концентраций сажистых частиц. Осипов Д. К-—В кн . Совершенствование сжигания газа и мазута в топках котлов и снижение вредностей в продуктах сгорания. Межвузовский тематический сборник научных трудов X 2 (124). Л., ЛИСИ, 1977, с. 67—70. [c.107]

    Проведен анализ различных методов измерения концентраций сажистых частиц. Даны некоторые обоснования выбора методики измерения содержания сажистых частиц. [c.107]

    Среди прочих методов измерения частиц дисперсной фазы следует отметить метод улавливания, который применим к системам нагдкость—жидкость. Метод основан на улавливании капель прп помощи инертной жидкости с большой вязкостью и определении НХ размеров различными оптическими методами. Для улавливания капель обычно применяется глицерин, различные масла и. некоторые другие жидкости. [c.277]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]

    Нестапионарность катализатора. Под воздействием изменяющегося состава реакционной среды катализатор не остается неизменным. Помимо химических стадий взаимодействия реагирующих веществ имеют место физические процессы на поверхности (перенос реагирующих веществ между различными центрами, поверхностная диффузия адсорбированных атомов и молекул, растворение и диффузня в твердом теле веществ — участников реакции, структурные и фазовые превращения) [30, 31, 32]. Не-стационарность состава катализатора весьма своеобразно ирояв-ляется в кипящем слое, где частицы непрерывно перемещаются в поле переменных концеитрации. При этом каждая частица в отдельности непрерывно изменяет свои каталитические свойства, никогда не приходя в равновесне с окружающей реакционной средой. Хотя усредненные за достаточно большой период времени свойства катализатора остаются неизменными и реактор в целом работает стационарно, его выходные характеристики могут существенно отличаться от рассчитанных с исиользованием стационарных кинетических уравнений. Для построения нестационарной кинетики каталитического процесса необходимо выявить параметры состояния катализатора, определяющие скорость реакции, закономерности их изменения под воздействием реакционной смеси, разработать методы измерения пли расчета этих параметров в ходе нестационарного эксперимента. Не меньшие трудности возникают при разработке и решении математической модели, отражающей изменение параметров состояния по глубине пленки активной массы в зерне, случайно перемещающемся по высоте слоя. [c.62]

    Описан метод измерения скоростей потока в неподвижном зернистом слое с помощью пневмометрпческого насадка, нечувствительного к скосам потока и обеспечивающего локальность измерения в точке размером не более 0,5 мм. Представлены результаты исследования полей скорости в случайной плотной упакованной структуре сферических частиц размером d = 4 мм в аппарате диаметром 125 мм. С помощью статистического анализа флуктуаций скорости проведена количественная оценка радиальной функции распределения, отражающей ближний порядок в расположении частиц в слое. Экспериментально показано, что конфигурация частиц первой координационной сферы близка к структуре плотнейшей упаковки со случайно распределенными дырками в узлах решетки. Табл. 1. Нл. 6. Библиогр. 7. [c.173]

    Кроме описанных методов определения механических примесей в США имеется стандартный метод (ASTM D 312) подсчета и измерения частиц на мембранном фильтре с помощью микроскопа. [c.172]

Рис. 32. Сопоставление различных методов измерения усредненных размеров ССЕ в мазуте западно-сибирской нефти. Средневзвешенный размер дисперсных частиц - — метод oulter --------— метод лазерной Рис. 32. <a href="/info/981645">Сопоставление различных методов</a> измерения усредненных размеров ССЕ в мазуте <a href="/info/397743">западно-сибирской нефти</a>. Средневзвешенный <a href="/info/1496044">размер дисперсных частиц</a> - — метод oulter --------— метод лазерной
    Термодинами- ческая (Дюпре) Wa= 012 + Сз2 - Ом где Wj-работа адгезии, т е. работа, за раченная на преодоление сил сцепления частиц двух поверхностей для их разделения, оп и 032- поверхностное натяжение соответственно первой и второй фазы на границе с воздухом ов-поверхностное натяжение на границе раздела фаз. Для определения адгезии между жидкостью и твердым тeJюм уравнение Дюпре не может быть эффективно применено, так как не существует достаточно точного метода измерения 1Юверхностного натяжения твердого тела. [c.6]

    Когда константы скорости отнесены к частицам, которые присутствуют в небольших концентрациях, но являются наиболее кинетически акгивными, следует указывать значения соответствующих констант ионизации или комплексооб-разования. В случае необходимости следует также приводить температурные коэффициенты этих констант. Как и для всех дополнительных данных такого рода, должны быть указаны литературные источники или методы измерения. [c.341]

    Для определения полного квантового выхода химической реакции необходимо измерить число прореагировавших исходных молекул или молекул, образовавшихся в результате реакции, и количество поглощенных квантов излучения. Если в первом случае требуется лишь привлечение подходящего аналитического метода, то в последнем необходим метод измерения абсолютного числа фотонов. Экспериментальные способы проведения таких абсолютных измерений описаны в гл. 7. При определении первичного квантового выхода необходимо прежде всего исключить или оценить вклад вторичных реакций и определить абсолютные эффективности излучательных и безыз-лучательных потерь энергии. Однако не всегда возможно даже установить, какой именно процесс является первичным, так что полное описание первичных процессов в терминах квантовых выходов может быть сделано лишь в особо благоприятных случаях. Тем не менее некоторые соображения могут быть использованы при определении первичного процесса. Так, при рассмотрении спектра поглощения можно предположить электронную конфигурацию возбужденного состояния и, следовательно, возможные механизмы распада. Детектируя промежуточные частицы (возбужденные состояния или атомы и ради- [c.19]

    Искомый набор значений ks, k находят решением системы алгебраических уравнений dSIdks = О, dS/dk , — О, линейных относительно искомых значений k , /г . Решение в этих случаях является единственным. Однако при этом нужно знать концентрации всех компонентов реакционной смеси, т. е. располагать полным экспериментальным описанием процесса. Это не всегда выполнимо, осо бенно в случае реакций с участием активных промежуточных частиц, концентрации которых могут быть ниже чувствительности самых совершенных методов измерений. [c.241]

    В экспериментальных работах методы определения pd, являются особенно важными из-за трудностей, связанных с измерением скорости твердых частиц Us. Так, если Ospds можно определить с помощью расходомера, a pдругой прибор, то можно найти и величину Ua. Большинство наиболее подходящих методов измерения pds разработано сравнительно недавно. [c.125]

    Величину L/s трудно определить путем прямых измерений однако существует несколько методов измерения локальных значений массовой скорости частиц Ospds (см. разд. 4.3). Таким образом, определив pds с помощью описанных ранее методов измерения, можно найти величину E7S. Представляется, что во многих случаях [58, 90] это единственно осуществимый способ измерения U s. [c.131]

    Методы измерения подвижности заряженных частиц. Подвижность, или скорость мифации индивидуальных ионов, можно определять 1) по изменению концентрации ионов исследуемого элемента в приэлектродном пространстве при электролизе 2) njTeM смещения в электрич. поле узких зон изучаемых ионов 3) с помощью подвижной фаницы между зонами (фронтальные методы, изотахофорез). [c.436]


Смотреть страницы где упоминается термин Методы измерения частиц: [c.294]    [c.55]    [c.91]    [c.190]    [c.11]    [c.293]    [c.6]    [c.70]   
Смотреть главы в:

Лакокрасочные материалы и покрытия теория и практика -> Методы измерения частиц




ПОИСК





Смотрите так же термины и статьи:

Измерения величины коллоидных частиц рентгеновским методом III

Измерения контактного потенциала полупроводника как метод обнаружения различных зарядовых состояний адсорбированных на нем частиц.— Коган и В. Б. Сандомирский

К- Осипов. Методы измерения концентраций сажистых частиц (ЦИСИ)

Методы измерения удельной поверхности, размера частиц и пористости

Методы интерпретации измерений светорассеяния растворов больших молекул (частиц

Методы определения размеров и формы частиц, основанные на измерении интенсивности проходящего света

Температура газа (жидкости) и твердых частиц и методы измерения



© 2024 chem21.info Реклама на сайте