Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическая активность измерение, метод анализ

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Поляриметрический метод анализа широко применяется в сахарной и других отраслях пищевой промышленности (производство масел, жиров), в фармацевтической промышленности (в частности, при производстве пенициллина). Следует отметить, что в некоторых случаях (сахариметрия) поляриметрия является более специфическим методом, чем рефрактометрия, так как основывается на измерении величины, значение которой определяется присутствием только оптически активного вещества. Для исследовательских целей, не связанных прямо с аналитической химией, поляриметрия находит применение в минералогии, микрохимии, а также при изучении кинетики процессов, в которых участвуют оптически активные вещества. [c.125]

    ПОЛЯРИМЕТРИЯ — метод физикохимического исследования, основанный на измерении вращения плоскости поляризации света оптически активными веществами. Чаще всего такими веществами являются органические соединения с асимметрическим атомом углерода. Измерения производят с помощью поляриметров — оптических приборов, в которых луч света последовательно проходит через систему двух поляризующих призм. Благодаря пропорциональности, существующей между углом вращения и концентрацией оптически активного вешества, поляриметрические измерения используют для количественного определения оптически активного вещества. П. является основным методом контроля в сахарной промышленности по величине угла вращения определяют содержание сахара в растворе. Методы П. используются также для анализа эфирных масел, алкалоидов, антибиотиков и др. Большое значение имеет поляриметрический метод исследования в органической химии, где на основании определения знака и величины вращения плоскости поляризации можно судить о химическом строении и пространственной конфигурации соединения, делать выводы о механизме реакций и др. Для этого в последнее время особенно успешно используется спектрополяри-метрия. [c.201]

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]


    III. Измерение оптического вращения (поляриметрия). Если в реакции участвуют оптически активные вещества, то в ходе реакции меняется вращение плоскости поляризации линейно-поляризованного света. Поляриметрический метод анализа применяется при исследовании кинетики гидролиза сахарозы (см. разд. ХП1.9.4). [c.707]

    Реакции в растворах также прослеживаются с помощью физических или физико-химических методов, например из измерений электропроводности (применяются для исследования кинетики ионных реакций, в результате меняется общее число ионов), из измерений поглощения света (в соответствии с законом Ламберта — Бера поглощение света пропорционально концентрации вещества). Различие в оптической активности исходных веществ и продуктов реакции также может быть использовано для определения концентрации (например, при исследовании инверсии сахарозы). Применение полярографических методов анализа основано на том, что предельный ток диффузии пропорционален концентрации. [c.167]

    Взаимодейстнне квантов света с атомами и функциональными группами вещества зависит от энергии квантов, поэтому при разных длинах волн X светового излучения меняется угол вращения плоскости поляризации раствором вещества. Это явление называют дисперсией оптического вращения а и изображают в виде кривых дисперсии оптического вращения (рис. 33.7). Если в соединении содержатся оптически активные группы, то на кривых оптического вращения возникают максимум и минимум, которые называют эффектом Коттона. Вид эффекта Коттона характеризует структуру вещества. Для измерения дисперсии оптического вращения используют спектрополяримет-ры, представляющие собой поляриметры, к которым подключен спектрофотометр или другой источник монохроматического излучения. Метод анализа с применением спектрополяриметров называют спектрополяриметрическим. [c.804]

    Количественное определение сахаров. Для количественных определений используют различные свойства сахара. Чаще всего в контроле производства различных углеводов применяют поляриметрический метод, который основан на измерении угла вращения плоскости поляризации растворов сахаров. На результаты при определении сахаров этим методом влияют другие оптически активные вещества, которые затрудняют анализ смесей сахаров. Большое распространение при исследовании растительных веществ и физиологических процессов в живых организмах получили химические и колориметрические методы. [c.151]

    Направление научных исследований теоретическая физика термоядерная физика методы измерения параметров плазмы кинетика химических реакций синтез моно- и поликристаллов сверхчистых керамических материалов свойства керамических материалов при высоких температурах синтез меченых соединений разделение устойчивых изотопов 0 , В °, N методом изотопного обмена в процессе дистилляции электронная структура молекул органических соединений синтез органических соединений синтез и полимеризация новых мономеров синтез гетероциклических соединений химические материалы для защиты от радиации координационные соединения синтез и спектральный анализ порфиринов и их металлических комплексов химия высокомолекулярных соединений эффект радиации на полимеры физические и реологические свойства высокомолекулярных соединений ионообменные смолы оптически активные, хелатные и изотактические полимеры изучение механизма каталитических реакций, особенно гетерогенного катализа с использованием металлов и окислов металлов радиационная химия радиолиз водных растворов антибиотики, противоопухолевые и противотуберкулезные препараты меченые органические соединения полярографические исследования в области органической химии и биохимии микробиология фермен- [c.377]

    Исследование физико-химических свойств активного ила и анализ современных методов определения его концентрации показали возможность применения для этой цели оптических методов измерения. Концентрация биологических суспензий, в том числе активного ила, может быть определена по величине поглощения света, проходящего через кювету, наполненную исследуемой жидкостью. Для небольших концентраций в этом случае справедлив закон Ламберта — Бера  [c.128]

    Поляриметрический метод анализа построен на измерение угла вращения плоскости поляризации при прохождении поляризованного луча 2 света через кристаллы и растворы некоторых оптически активных веществ, [c.9]


    В соответствие с этой концепцией были предложены многочисленные методы, способные обнаружить метаболическую активность микроорганизмов. По классификации Имшенецкого (1970), все предложенные методы могут быть разделены на прямые и косвенные. К последним относятся химические анализы грунта и атмосферы планеты, астрономические методы и др. Прямые методы основаны на передаче обзорных панорам в случае поиска макроформ и констатации роста и размножения одноклеточных организмов. Прямые методы могут быть разделены на наиболее надежные, заслуживающие внимания, и менее надежные. К наиболее надёжным Имшенецкий (1970) относит определение нарастания биомассы нефелометрия, УФ-фотометрия, количественное определение железонор-фириповых белков и АТФ, определение количества 14 СО-2, выделяющегося в процессе утилизации меченых питательных веществ, содержащихся в среде, измерение pH и Eh культуральных жидкостей. Заслуживают внимания такие методы, как определение оптической активности, количественное определение флавинов, белка, нуклеиновых кислот и аминокислот, обнаружение фосфатазной активности, а также манометрия. Менее надежными следует признать методы с применением 0, 0, калориметрию, определение митогенетического излучения. [c.108]

    В противоположность случаю асимметрических алленов оптическая активность в ряду бифенила была открыта до того, как она смогла получить правильное объяснение. К тому времени, когда были разделены первые производные бифенила (1922 г.) существовала значительная неясность в отношении строения бифенильных производных и причины асимметрии казались непонятными. Лишь позднее было установлено (с помощью измерения дипольных моментов и методом рентгеноструктурного анализа), что бензольные кольца в бифенилах коаксиальны. [c.518]

    Смесь оптически активных веществ может быть проанализирована спектрополяриметрическим методом, т. е. измерением угла вращения при разных длинах волн. Методика этого анализа очень близка к методике спектрофотометрического определения смеси двух окрашенных веществ. Расчетные формулы сохраняют свою применимость и в спектрополяриметрическом методе, если молярные коэффициенты поглощения е заменить удельными вращениями Оуд, учесть длину трубки и переход к другой концентрационной шкале. Точность анализа возрастает, если одно из анализируемых соединений (а еще лучше — оба) в исследуемой области спектра имеет длину волны нулевого вращения, так как при этой длине волны угол вращения будет определяться концентрацией только второго компонента. [c.158]

    В рефрактометрических Ж. а. измеряют показатель преломления (коэф. рефракции) жидкости в видимой области спектра. Области применения анализ многокомпонентных смесей (напр., определение концентрации соли в морской воде предел обнаружения до 5-10" мг/мл) контроль качества пром. продукции (напр., измерение жирности молока и сливочного масла в пищ. произ-вах) и др. Действие поляризационных Ж. а. основано на измерении угла вращения плоскости поляризации монохроматич. света, прошедшего через р-ры оптически активных в-в. Области применения сахариметрия (напр., определение глюкозы), анализ масел (напр., эфирных), к-т (напр., винной), водных р-ров спиртов (напр., борнеола) предел обнаружения 2-10" % (см. также Хироптические методы). [c.150]

    В основе метода поляриметрического анализа лежит измерение угла вращения плоскости поляризации света, прошедшего через оптически активную среду. [c.373]

    Колориметром пользуются чаще, чем поляриметром, так как окрашенных соединений больше, чем оптически активных. Колориметрия — это один из вариантов спектрального анализа, который является одним из наиболее распространенных методов исследования скоростей реакций. Эти методы особенно важны для измерения скоростей очень быстрых реакций использование их для этой цели более подробно описано в следующей главе. [c.24]

    Концентрации определяют путем химического анализа или измерения какого-либо физического свойства, например давления при реакциях между газами, объема при реакциях в жидкой фазе, оптической активности или показателя преломления и т. д. при реакции в растворе. Изменения концентрации со временем найденные при этих измерениях, вводят в предварительно проинтегрированные кинетические уравнения первого, второго или третьего порядка, чтобы установить, какое из этих уравнений дает постоянные значения к на всем протяжении реакции. Другие методы определения константы к будут описаны ниже. [c.269]

    Очевидно, что в настоящее время наилучший метод характеристики природы спиральных конформаций и оценки степени спиральности белков связан с анализом эффекта Коттона. Симмонс и др. [589] предложили этот метод для белков, которые заведомо содержат а-спирали, и показали, что эта конформация характеризуется отрицательным эффектом Коттона, проявляющимся при 225 м 1, причем оптическая активность была мини-мально при 233 м л. Позднее, когда появились приборы для проведения измерений в близкой ультрафиолетовой области, был обнаружен второй положительный эффект Коттона, проявляющийся при 190 м л и имеющий очень четкий максимум при 198 м у [600]. Было показано, что сравнение значений [т] белков в этих максимумах и минимумах с соответствующими данными для обычных полипептидов приводит к значениям степени спиральности, которые коррелируют с оценками, сделанными на основании известных значений Ь, [589, 594]. Изучение эффекта Коттона имеет два преимущества по сравнению с исследованием, основанным на уравнении Моффита. [c.203]

    Было обнаружено, что комплексы, образуемые некоторыми поверхностно-активными веществами с полиоксиэтиленовой цепью, нерастворимы в хлороформе, но легко извлекаются бензолом. После испарения бензола комплекс разлагают водой и в водном растворе определяют кобальт в форме комплекса с нитрозо-К-солью оптическую плотность раствора измеряют при 500 нм [19. Чувствительность, достигаемая в этом методе, почти столь же высокая, как и при прямом измерении с голубым комплексом при 318 нм. Предложенный метод удобно проводить в тех лабораториях, в которых имеется спектрофотометр для работы в видимой части спектра. Кроме того, если пользоваться модифицированным реактивом Брауна и Хейса [18] и определять кобальт этим способом, можно еще более повысить чувствительность анализа. [c.236]

    Очевидно, что симметрия этих цепей такова, что все заместители в любой цепи эквивалентны, и поэтому абсолютное определение стереохимической конфигурации не может быть сделано методом ЯМР, хотя все замещенные углеродные атомы асимметричны. Их спектры должны, однако, несколько различаться можно в принципе установить различие между ними на основе конформационного анализа и измерений констант вицинального протон-протонного взаимодействия. Натта и др. [2,7] синтезировали оптически активные кристаллические полимеры из эфиров трамс гранс-сорбиновой кислоты и показали, что они имеют гране-1,4-эрмгро-диизотактиче-скую структуру (V). [c.73]

    Когда радиоавтографию используют для анализа образцов очень низкой активности, имеются два способа получения необходимых данных. Как уже упоминалось, может быть использован денситометр, допускающий точные измерения низких оптических плотностей, или применены методы подсчета числа проявленных зерен, приходящихся на единицу площади пленки. Последние стали широко использоваться исследователями, применяющими радиоавтографию с высоким разрешением [9]. [c.251]

    Конъюгат [антитело — щелочная фосфатаза], содержащийся в избытке, катализирует образование окрашенного продукта прямо пропорционально концентрации фермента, причем эта зависимость, по-видимому, сохраняется и при А405>2 ед., где уже оптическую плотность нельзя надежно измерить. Для расширения концентрационного диапазона (в рамках сохранения линейности) можно попытаться измерять оптическую плотность при длине волны, соответствующей меньшей экстинкции (Saunders et al., 1984). Максимум поглощения для л-нитрофенола соответствует Х=405 нм. При Я,=450 нм экстинкция л-нитро-фенола составляет примерно одну пятую экстинкции в максимуме. Это означает, что, проводя измерения при двух длинах волн — 405 и 450 нм, можно в пять раз поднять допустимый верхний предел концентрации тестируемого компонента. При работе с обычным спектрофотометром это связано с необходимостью постоянного переключения длины волны с 405 на 450 нм для каждого образца. В то же время на фотометре со сменными фильтрами, рассчитанном на несколько длин волн и управляемом микропроцессором, можно делать то же самое в автоматическом режиме. Сравнивая значения поглощения, полученные при двух длинах волн, процессор может выбирать одно из них, более подходящее для расчета концентрации образца. По-стройшая таким образом система обеспечивает высокую чувствительность благодаря измерениям в максимуме и в то же время позволяет одновременно расширить концентрационный диапазон за счет дополнительных измерений при длине волны, соответствующей меньшей экстинкции. Существенно помнить, что чувствительность ферментативного иммунометрического анализа практически полностью определяется удельной ферментативной активностью конъюгата [фермент — антитело]. В связи с этим любое повышение удельной активности конъюгата, не сопровождающееся усилением его неспецифического связывания, будет приводить к повышению чувствительности, т. е. к снижению минимального значения концентрации тестируемого компонента, поддающегося определению данным методом анализа. [c.392]

    Успех работы с новыми приборами превзошел все ожидания. Это объясняется тем, что, хотя структурный анализ проводился с помощью того же самого принципа аналогий, который применяли и тогда, когда оптическое вращение ограничивалось измерением при О-линии натрия, метод вращательной дисперсии давал значительно большие преимущества по сравнению с монохроматической поляриметрией. Прежде всего непосредственное окружение хромофора играет основную роль в возникновении наблюдаемой оптической активности, обусловленной этим хромофором (вицинальный эффект Фрейденберга), сводя, таким образом, всю проблему определения структуры молекул к изучению структуры разнообразных асимметрических центров, таких, например, которые существуют в стероидах и терпенах. Последовательное присоединение хромофора к соответствующим частям скелета иолициклической молекулы путем простых химических реакций позволяет исследовать структуру участков сочленения колец. Помимо этого, знание кривой эффекта Коттона, включая его амплитуду, знак и тонкую структуру, дает более полную характеристику асимметрии, создаваемой окружением около данного хромофора. Например, довольно легко отличить 3-А/В-гранс-кетон от 11-кетона по кривым вращательной дисперсии этих соединений, тогда как инкремент оптического вращения при О-линии натрия относительно исходного стероида без кетогруппы практически был бы одним и тем же в обоих случаях. Более того, если считать, что такие аналогии установлены, то исследования кривой вращательной дисперсии обычно достаточно для решения вопроса о структуре молекулы. Иначе обстоит дело в случае использования только вращения на О-линии натрия здесь приходится вычислять разность между оптическим вращением исследуемого вещества и вращением родственного соединения без хромофора. Последнее соединение, однако, часто нельзя получить из-за отсутствия необходимых исходных веществ или из-за трудностей его синтеза. Таким образом, вращательная дисперсия является более привлекательным методом для химика по сравнению с обычным поляримет- [c.14]

    Пропорциональность, существующая между вращением и концентрацией оптически активного вещества, позволяет использовать поляриметрич. измерения для количественного определения оптически активных веществ (естественно, что в этом случае концентрационная зависимость уд. вращения должна быть не слишком велика). В частности П. давно уже является основным методом контроля в сахарной пром-сти по величине угла вращения определяют содержание сахара в р-ре. Кроме того, поляриметрич. методы исиользуются для анализа эфирных масел, алкалоидов, антибиотиков и др. веществ. [c.129]

    Наряду с указанными параметрами можно оценить количество оптически активного компонента в полимерном образце по данным измерений удельного оптического вращения. Для кристаллических образцов можно оценить степень кристалличности, для полиэлектролитов — электропроводность и степень диссоциации. Метод ядерного магнитного резонанса оказывается полезным для определения степени микротактичности и длин последовательностей звеньев одного типа в главной цепи. Длину указанных последовательностей можно определить также методами ИК-спектрофотоме-трии, дифференциального термического анализа и газовой хроматографии продуктов пиролитического расщепления образца. Примеры использования последних методов приводятся в разд. II,Д и IV. [c.301]

    Поляри.метрия — метод физико-химического анализа, основанный на измерении вращения плоскости линейно поляризованного света оптически активными веществами. Большая часть оптически активных веществ — это органические соединения с ассимметрич-иым атомом углерода, т. е. с таким, единицы сродства которого насыщены четырьмя различными заместителями. Соединения асимметричных атомов четырехвалентного олова, серы, селена, кремния и пятивалентного азота также оптически активны. [c.346]

    Л. Н. Теренин и его ученики успешно применяют оптические методы для решения многих проблем катализа. А. Н. Фрумкин разработал совершенный электрохимический метод изучения адсорбции газов и структуры поверхности металлов. А. В. Фрост, Д. П. Добычин, П. Д. Данков и др. для изучения механизма реакции гидрогенизации этилена пользовались измерением электропроводности катализатора во время реакции. О. И. Лейпунский и А. В. Ривдель исполъзовали изменение разности контактных потенциалов для выяснения природы активированной адсорбции. Для изучения ориентации молекул в адсорбционном слое на твердых контактах А, X. Борк воспользовался точными кинетическими исследованиями. С. 3. Рогинский и И. Е. Брежнева для изучения поверхности твердых контактов и происходящих на них процессов воспользовались омечеными атомами, применяя искусственные радиоактивные изотопы. Рентгенографическое исследование влияния параметров решетки и размеров первичных кристаллов на активность и избирательность действия катализаторов, а также рентгеновский анализ промышленных катализаторов проводили А. М. Рубинштейн, Г. С. Жданов, В. П. Котов и Г. Д. Любарский. Исследование поверхностных слоев методом дифракции быстрых электронов в течение нескольких лет ведет 3. Г. Пинскер. Электронномикроскопические исследования катализаторов проводят А. Б. Шехтер, С. 3, Рогинский и др. В последние годы для изучения катализаторов начали применять термический анализ. [c.11]

    Естественно, что при этом методе непременным условием является отсутствие в растворе сахара других оптически активных веществ. Если однако, таковые имеются, то они или должны быть предварительно удалены, или в величину вращения должна быть внесена поправка. При количественном определении сахара в свекловице, сахарном тростнике или сахаре-сырце делают первое, осаждая находящиеся в растворе вместе с тростниковым сахаром оптически деятельные белковые тела свинцовым уксусом (основным уксуснокислым свинцом) и отфильтровывая осадок. При этом выпадают в осадок и красящие вещества. Если наряду с тростниковым сахаром имеется другой вид сахара, то лучше выбрать второй путь. Например при анализе патоки, содержащей кроме тростникового сахара к кнвентирс-ваиный сахар, сначала определяют вращение вправо в разведенном и обесцвеченном сиропе. Затем производят инверсию, тогда вращенье вправо или уменьшает я, или переходит влево, так как инвертированный сахар вращает влево. Далее, если известна разница вращения раствора тростникового сахара определенной концентрации и полученного из этого раствора инвгртированного сахара, то на основании этих двух измерений можно вычислить содержание инвертированного и тростникового сахара. [c.270]

    АРМ физико-биохимических анализов, состоящее из набора автоматизированных измерительных модулей с микропроцессорными контроллерами, — для морфометрического анализа, измерения активности антибиотиков, анализов реплик колоний на чашках Петри и состава культуральных сред с помощью газовой и жидкостной хроматографии, непрерывного измерения оптической плотности суспензий, определения дыхательной активности микроогранизмов методом замедленной флуоресценции, биохимических анализов с помощью хемилюминометра  [c.106]

    В качестве первого объекта для практической разработки спектрополяриметрического анализа оптически неактивных веществ мы использовали ароматические альдегиды, которые с первичными аминами в определенных условиях количественно дают основання Шиффа. Эту реакцию Митчел [44, 45] использовал для определения аминов методом акваметрии. В нашем случае для количествеиного определения ароматических альдегидов использовался раствор (—) 1-фенилэтиламина в пиридине. После реакции величина вращения раствора изменяется и это изменение может быть использовано для расчета количества прореагировавшего альдегида. После реакции в растворе содержатся два оптическн активных компонента — основание Шиффа и избыток реактива. Несмотря на это достаточно произвести измерения при одной длине волны, так как количество реактива известно. Расчет в этом случае производится по формуле [c.425]

    В этой главе мы рассмотрим способы характеристики с помощью ВЖХ пикомольных количеств биологически активных белков, получаемых с колонок для микроанализа, и обсудим аналитические и полупрепаративные варианты ВЖХ, используемые при очистке веществ. Мы остановимся также на примерах использования ВЖХ для сравнительного биохимического анализа небольших количеств практически неочищенного исходного материала и для получения нанограммовых количеств биологически активных белков при четырех вариантах разделения. Будут сопоставлены методы количественного определения белков при ВЖХ с помощью прямых измерений оптической плотности и другие стандартные методы. Особое внимание мы уделим вопросам чувствительности ВЖХ, специальным приемам, предназначенным для приготовления растворителей н образцов, и мерам, необходимым для сохранения биологической активности разделяемых веществ. На одном из примеров мы увидим, как высокоочищенный препарат получают при использовании нескольких последовательных этапов ВЖХ. Будут рассмотрены также некоторые неверные концепции, касающиеся перспектив применения ВЖХ для получения ряда биологически активных веществ. [c.105]


Смотреть страницы где упоминается термин Оптическая активность измерение, метод анализ: [c.98]    [c.18]    [c.27]    [c.446]    [c.100]    [c.183]    [c.210]   
Современная аналитическая химия (1977) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Метод активные

Методы оптические

Оптическая активность

Оптическая активность, измерение

Оптические методы анализа

активное оптически активное



© 2025 chem21.info Реклама на сайте