Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулонометрия точность

    Кулонометрический анализ обладает рядом существенных достоинств по сравнению с другими физико-химическими методами анализа надежное определение как малых, так и больших количеств вещества с высокой точностью и воспроизводимостью (погрешность 0,05—0,01%), отсутствие первичных стандартов, возможность использования малоустойчивых реагентов, быстрота. Потенциостатическая кулонометрия отличается, кроме того, высокой селективностью. [c.162]


    К сожалению, отсутствие точных значений D, б позволяет оценить k лишь с точностью до порядка. В связи с этим практически электролиз в потенциостатической кулонометрии не доводят до конца, а прекращают при уменьшении силы тока до значения, которое может обеспечить желаемую точность измерения содержания вещества в анализируемой пробе. Так при fe = 0,l—0,2 для получения ошибки 0,1% электролиз следует вести не менее 15—30 мин. [c.254]

    Собирают схему, в которую последовательно включают шесть электролизеров и кулонометр. В электролизеры заливают электролит № 4, нагревают до 55 °С и затем поддерживают температуру с точностью 1 °С. В первых трех электролизерах электролит перемешивают магнитной мешалкой или путем циркуляции электролита, а в остальных — сжатым воздухом. Устанавливают катодную и анодную плотности тока — 100, 200, 300 А/м , используя электроды с различной площадью поверхности. Точное значение плотности тока определяют, исходя из значения тока на электролизере и рабочей поверхности электродов. [c.125]

    В качестве своеобразного разрядника можно использовать медный кулонометр соответствующего размера, что позволит с большей точностью определить емкость аккумулятора при до-разряде. Размер катода кулонометра должен быть таким, чтобы катодная плотность тока не превышала 300 А/м , а расстояние между электродами для снижения омического падения напряжения должно быть минимальным. [c.238]

    Применяя этот метод, можно с высокой точностью определить силу тока 1 мкА в секунду, что соответствует концентрациям веществ порядка моль или 10 г. Это означает, что кулонометрия относится к эффективным методам определения микроколичеств веществ. [c.273]

    Все эти кулонометры очень несложны. Точность определения при помощи этих приборов обусловлена не только их спецификой, но и степенью точности взвешивания (чувствительностью аналитических весов). [c.212]

    При определении содержания добавочных компонентов допустима большая ошибка определения [а = 2. .. 5. ..10% (отн.)], особенно при определении небольших содержаний (<10" %). Вследствие таких требований к точности определения основных и добавочных компонентов для определения первых применяют преимущественно химические методы анализа, для вторых — физико-химические методы. Из химических методов большое применение, благодаря их быстроте, находят титриметрические методы с различными способами определения точки эквивалентности. При особо высоких требованиях к точности прибегают к гравиметрическим методам анализа. Среди физико-химических методов определения добавочных компонентов особенно широкое применение нашли электрохимические методы анализа (полярография, кулонометрия) и оптические (фотометрия). При определении не очень малых количеств элементов (>1%) применяют также различные варианты объемных методов анализа. [c.399]


    Точность показаний большинства кулонометров весьма сильно зависит от плотности тока  [c.24]

    Прямая гальваностатическая кулонометрия осуществляется на установке, изображенной на рис. 27, б. Для поддержания неизменной заданной величины тока при электролизе используется гальваностат Г. Когда величина тока поддерживается неизменной, то количество электричества Q определяется с большей точностью, чем в потенциостатической кулонометрии, так как ток и время определяются с погрешностью не более 0,1%. [c.56]

    Химические кулонометры позволяют измерять величины Q>10 к с точностью 0,1%- Электронные интеграторы дают точность от 1 до 0,1%. Планиметрия площади применяется для измерения малых количеств электричества 10 к) с точностью от 1 до 5%- [c.66]

    Гальваностатическая кулонометрия позволяет определять очень малые количества вещества с большой точностью. Чувствительность метода очень высока при токе электролиза Ю а в течение одной секунды с электрода переходит в раствор 10" г-экв вещества, что приблизительно эквивалентно 10 г. [c.68]

    Малые количества электричества (0,01 —10 к) можно с достаточной точностью определять с помощью колориметрических кулонометре в. [c.79]

    Электролиз ведут в течение одного часа. Затем, выключив ток, открывают кран в электролитическом ключе. Вынимая ключ н катод, дают возможность стечь с них раствору. Катодный стакан снова взвешивается с кислотой с точностью до 0,01 г. Определяют вес катодной жидкости. Для 0,01 н. НаЗО он численно равен ее объему. Для определения концентрации кислоты после опыта снова проводят титрование, Зная титр и объем щелочи, пошедший на титрование кислоты до опыта и после него, а также общее количество кислоты, можно рассчитать изменение количества ионов водорода в катодном пространстве. Кулонометр дает общее количество электричества Q, протекшее в цепи за время электролиза. Уравнение (2,1 ) для этого опыта можно переписать так  [c.38]

    Точность серебряного кулонометра несколько выше (до 0,005%). Платиновая чашка служит катодом, анод — серебряный ( г. 34,6). Электролит в серебряном кулонометре пр вставляет собой нейтральный или слегка подкисленный 30%-ный раствор АдЫОз. Катодная плотность тока—около 0,02 А/см , анодная — не более 0,2 А/см . [c.65]

    Объемный водородно-кислородный кулонометр в виде сосуда для электролиза воды дает возможность измерять объем выделяющихся газов (рис. 34, в). Электролитом служит 15—20%-ный раствор щелочи. Применяют газовые кулонометры сравнительно редко, так как точность их невысока, а в работе они гораздо менее удобны, чем весовые кулонометры. [c.65]

    Сосуда с круговым желобом, наполненным ртутью. Точность ртутного кулонометра очень низка (1%), но он может работать при больших плотностях тока. Его точность можно повысить, выливая ртуть через кран и взвешивая ее в этом случае ртутный кулонометр становится весовым. [c.66]

    В подобных интеграторах отсутствует коррозия металлических деталей приборов, а использование их возможно в более широких интервалах температур (до нескольких сот градусов). Наиболее пригодны в качестве интеграторов электронные кулонометры, характеризующиеся широким диапазоном измерений, большим интервалом допустимых токов, протекающих через прибор, высокой точностью, возможностью построения кривой количество электричества — время. Подобные и другие электрохимические преобразователи обладают рядом преимуществ и стимулируют электрохимические исследования. [c.69]

    Из кулонометров наиболее точный — серебряный, но он неудобен в обращении. Титрационный кулонометр Кистяковского и йодный кулонометр также достаточно точны, но применяются для небольших количеств электричества. Во всех случаях, где не требуется большой точности, пользуются медным кулонометром. Ошибки его не превышают 0,2%. [c.100]

    В момент прохождения границы через верхнюю риску аЬ включают кулонометр и замечают время по секундомеру. Ток в течение всего опыта должен поддерживаться постоянным и при площади электродов 3 и 4 около 1 см должен быть близким к 1 — 1,5 мА. Когда граница достигает нижней отметки а Ь, ток выключают. Затем определяют количество пропущенного электричества н подсчитывают число переноса MnO по уравнению (11). Точность измерения чисел переноса методом подвижной границы зависит от тщательности определения положения эТой границы, обычно регистрируемого специальной оптической системой. [c.134]

    Э. известна с 1860-х гг. и применялась ддя определения металлов, используемых для чеканки монет, в разл. сплавах и рудах. Эго безэталонный метод, к-рый можно рассматривать как простейший вариант кулонометрии. По точности и воспроизводимости результатов Э. превосходит др. методы при определении таких металлов, как Си, 8п, РЬ, Сс1, 2п. Несмотря на относит, длительность эксперимента, Э. до сих пор применяют для анализа сплавов, металлов и р-ров для электролитных ванн. [c.423]

    Электрохимические кулонометры представляют собой электролизеры, в которых определяют массу продукта, образующегося в растворе или выделяющегося на электроде (электродах) со 100%-ной эффективностью. По массе образовавшегося продукта рассчитывают Q. В зависимости от природы реакции и способа определения массы выделившегося продукта электрохимические кулонометры подразделяются на гравиметрические, титрационные, газовые, спектрофотометрические и др. Среди них высокой точностью отличается серебряный кулонометр. Однако он неудобен в работе из-за рыхлости образующегося на катоде осадка частиц серебра, которые осыпаются при промывании электрода. [c.70]


    Подобно. электровесоаому анализу кулонометрия проводится (в зависимости от состава раствора и возможного числа электродных реакций) или при з-здап-ном потенциале, или при заданном токе. Второй вариант следует применять в тех случаях, когда на электроде в широком диапазоне потенциалов исключена возможность протекания каких-либо реакций, кроме основной. Этот вариант обеспечивает максимальную точность и чувствительность анализа. Количество прошедшего электричества при кулонометрии с заданным потенциалом измеряют при помощи кулонометра, при кулонометрии с заданной силой тока определяют умножением силы тока на время анализа. Это так называемая непосредственная кулонометрия. [c.286]

    Кулонометрическое титрование в аппаратурном оформлении сложнее, чем титрование с индикаторами или потенциометрическое титрование. Поэтому кулонометрия не находит щирокс-го применения в практике обычного химического анализа. Однако она используется в тех случаях, когда бывает необходимо определить микроколичества растворенных веществ, а также при проведении автоматического титрования. Приготовлен. и использование очень разбавленных титрованных растворов для объемного определения малых количеств растворенных веществ связано со значительными ошибками и неудобствами в работе. При кулонометрическом титровании необходимость применения таких титрованных растворов отпадает, так как определяемое вещество либо подвергается превращению непосредственно на электроде, J ибo титруется реагентом, генерируемым на одном из электродов в самой анализируемой пробе. В каждом из этих двух случаев определение ведется по израсходованному количеству электричества, измерение которого даже в малых дозах можно проводить с большой точностью. [c.286]

    Амперостатическая кулонометрия имеет ограниченное применение и приложима к объектам, находящимся на электроде в виде твердой фазы (слои металлов, оксиды и т. д.). В этом случае до исчезновения твердой фазы с поверхности электрода потенциал его не меняется. Количество вещества находят по уравнению Фарадея из количества электричества, израсходованного на растворение. Метод применим к анализу микро- и субмикроколичеств вещества точность его может быть доведена при соответствующем аппаратурном оформлении до 99,9%. Метод быстрый, время на анализ составляет от минут до получаса. Результаты анализа записываются на диаграммную ленту, т. е. метод документален. [c.256]

    В качестве электролизеров используют емкости из стекла или винипласта вместимостью 0,2—0,5 дм . В каждый помещают по два анода из меди и катодную основу медную или титановую фольгу. Электроды электролизеров и медного кулонометра перед началом опыта подготавливают в соответствии с методикой, изложенной в приложении II. Электроды перед опытом и после его окончания взвешивают. Ток и напряжение на электролизере измеряют с точностью до 0,01 измеряемой величины. Электрическая схема приведена в приложении I. Кроме того, измеряют потенциалы электродов при рабочих плотностях тока и падение напряжения в электролите. Схема измерения приведена в приложении I. В качестве электрода сравнения используют ртутносульфатный электрод с концентрацией серной [c.123]

    Хорошие результаты получают при комбинировании методов гальваностатической и потенциостатической кулонометрии, При этом определяемые компоненты- селективно выделяют потенциостатическим методом и определяют с большой точностью амперостатическим методом при растворении. Таким образом используют специфические преимущества обоих методов. [c.273]

    Л1едный кулонометр. При про.хождении тока через сравнительно концентрированный раствор сульфата меди в сернокислой среде на Pt-катоде откладывается плотный слой металлической меди. После промывки и сушки электрод взвешивают с достаточно большой точностью на аналитических весах. Вследствие частичного взаимодействия выделенной меди с находящимися в растворе Си +-ионами и образования Сы+ при измерении очень малых величин количества электричества точность определения несколько снижается. [c.212]

    Колориметрические кулонометры. В этих кулонометрах измеряют с помощью электро- или спектрофотометров изменение оптической плотности растворов, подвергающихся электролизу. Такой способ измерения <5 имеет сложное аппаратурное оформление и требует некоторых дополнительных операций (например, построения калибровочных графиков для нахождения концентрации определяемого вешества по оптиче-ско 1 плотности). Однако этот метод, не отличаясь большой точностью, очень чувствителен, и поэтому ценен при определении весьма малых количеств электричества (от 0,01 до 1 /с). В принципе в колориметрических кулонометрах могут быть использованы любые электрохимические реакции, которые вызывают изменение интенсивности окраски или цвета п растворе. Примером может служить возрастание pH раствора в като-лите пли его падение в анолите, сопровождаемое изменением интенсивности окраски соответствующего кпслотно-осмовного индикатора. Применяя подходящие светофильтры, можно проследить за изменением интенсивности окраски кислотной нли щелочной формы индикатора. [c.213]

    Действие электромеханических интеграторов основано на применении тахометрических двигателей постоянного тока. Используя усилители тока и систему передаточных механизмов, можно добиться пропорциональности между скоростью вращения механизма и мгновенным током, проходящим через цепь, т. е. число оборотов должно соответствовать количеству электричества. Некоторые из подобных приборов снабжены счетным механизмом, фиксирующим число оборотов (калибровкой прибора можно определить цену оборота в кулонах) или непосредственно количество электричества, или же, что еще более удобно, количество вещества в миллиграмм-эквивалентах. Некоторые интегрирующие устройства обеспечивают автоматический вычет величины остаточного тока из величины общего тока электролиза. Эти приспособления ускоряют определение количества электричества, но по точности уступают ряду электрохимических кулонометров, особенно при прохождении малых токов, из-за недостаточно строгого соблюдения линейности между скоростью вращения и величиной тока вследствие инерционных явлений в тахометре и передаточных механизмах. Все же некоторые из подобных приборов о,беспечивают до 0,1% воспроизводимости в широких пределах измеряемых количеств электричества. [c.214]

    Весовые кулонометры основаны на определении количества электричества, прошедшего через систему по привесу металла катода. К, этому типу относится серебряный кулонометр (рис. 1). В простейшем виде он состоит из платинового тигля 4, служащего катодом, и серебряного анода 2, который подвешивается на стеклянный крючок. Между электродами на стеклянном кольце 1 находится пористый сосуд 3 — диафрагма, препятствующая возникновению побочных реакций. Электролитом служит нейтральный или слегка подкисленный раствор AgNOз. Катодная плотность тока 0,02 а1см , анодная — не более 0,2 а/см . Точность серебряного кулонометра достигает 0,005%. [c.21]

    Кулонометры. Поскольку в потенциостатической кулонометрии в цепи электролитической ячейки протекают токи, изменяющиеся во времени, а о количестве окисленного или восстаиовлениого вещества судят по количеству электричества, прошедшего через ячейку, необходимо применять приборы для измерения количества электричества. Причем точность кулонометрического определения определяется точностью метода определения количества электричества или метода интегрирования кривых ток — время. [c.75]

    Принцип действия кулонометрических кулономст-ров основан иа катодном осаждении металла из концентрированных растворов его соли на электроде из благородного металла нрп 100%-ном выходе по току. После завершения основной реакции осажденйый металл растворяют анодно в гальваностатическом режиме. Продолжительность процесса определяют с помощью электрохронометра или секундомера. Окончание процесса обнаруживают по резкому скачку потенциала анода, измеряемого относительно электрода сравнения. В этом случае обычно применяют медный кулонометр, который позволяет измерять количество электричества в широких пределах от 0,01 до 100 /с, с достаточной точностью. [c.80]

    Для определения чисел переноса собирают схему, изображенную на рис. Vni.9. Перед началом опыта катод медного куло-нометра электролитически покрывают медью, промывают, сушат и взвешивают. Титрованием 0,05 н. NaOH определяют концентрацию H2SO4 в исходном растворе (для титрования берут навески раствора 15—20 г). Взвешивают сосуд 1 и сухую толстую мембрану 5 (с точностью до 0,01 г) и в сосуды, /, 5, 2 наливают исходный раствор. Заполняют в перевернутом состоянии солевые мосты исходным раствором и закрывают их открытые концы съемными толстыми мембранами. Взвешенную мембрану помещают в катодный солевой мост. В сосуды 1, 5, 2 опускают солевые мосты и свинцовые электроды. Включают ток при введенном реостате (перед включением схема должна быть проверена преподавателем). Увеличивают силу тока до 40—50 мА. Через 1,5—2 ч выключают ток и сливают раствор из. солевого моста в сосуд 1 путем удаления мембраны. Взвешивают сосуд 1 вместе с мембраной (с точностью 0,01 г). Титрованием навески раствора из сосуда 1 определяют концентрацию кислоты в растворе после электролиза. Взвешивают промытый и высушенный катод кулонометра. Число переноса катиона рассчитывают, используя уравнение  [c.476]

    Мемисторы имеют более широкие области применения, так как выполняют функции и интеграторов, и аналоговых элементов памяти. Они питаются от сети контролируемого оборудования постоянным током . Количество вещества, выделившегося на электроде в результате прохождения тока, пропорционально времени работы. Большое распространение получили счетчики с отсчетом времени по изменению длины электродов в результате прохождения тока. Примером такого прибора может служить счетчик, конструкция которого приведена на рис. 35,б. В корпусе из полупрозрачной пластмассы помещены два медных электрода, один из них (катод) расположен в капилляре. Электролитом служит раствор сернокислой меди. При прохождении тока анод растворяется, и на катоде выделяется медь. Здесь приращение катода пропорционально времени работы прибора и плотности тока и не зависит при данной плотности тока от площади поперечного сечения катода. Помимо меди, в таких счетчиках могут быть использованы и другие металлы, например ртуть (рис. 35, б). Ртутный счетчик имеет более высокую точность (+3%), длина его шкалы 25,4 мм, диапазон измеряемого времени от 5 до 10000 ч, потребление тока от 0,01 до 1 мА. Некоторые преимущества имеют химо-троны с твердым электролитом. Можно конструировать очень компактные, малогабаритные приборы и устройства, которые значительно удобнее в эксплуатации, чем жидкостные. Известны, например, электрохимические управляемые сопротивления на основе Agi. Такой кулонометр-интегратор представляет собой цепь Ag Ag3SI Au. [c.69]

    По виду выходной величины и способу ее отсчета различают электрохимические интеграторы с электрическим и неэлектрическим отсчетом. В качестве таких интеграторов могут служить электрохимические кулонометры, например серебряные или медные. Серебряный кулонометр состоит из платинового катода и серебряного анода. Электролитом служит нейтральный или слегка подкисленный раствор AgNOs. Точность серебряного кулонометра достигает 0,005%- Менее точен медный кулонометр он состоит из медных анода и катода, опущенных в электролит, содержащий uSOa и H2SO4. [c.499]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    ФАРАДЕЯ ПОСТОЯННАЯ, F, фувдам. физ. константа, равная произведению величины элементарного заряда на Авогад-ро постоянную F = eN. - 96484,56 Кл/моль. Ф. п. может быть найдена двумя способами 1) из приведенного выше соотношения 2) из ур-ния F= QMIzm, вытекающего из Фарадея законов. Здесь Q - кол-во электричества, пропущенного через кулонометр, т - масса выделившегося при электролизе в-ва, М - его мол. м., г - число элементарных зарядов, участвующих в образовании одной молекулы этого в-ва. В пределах достигнутой точности измерений ( 0,01 Кл/моль) оба способа дают совпадающие результаты. Б. б. Дамаскин. ФАРАДЕЯ ЭФФЕКТ, заключается во вращении плоскости поляризации линейно поляризованного света, распространяющегося в в-ве вдоль постоянного магн. поля, в к-ром находится в-во. [c.58]

    В газовых кулонометрах измеряют общий объем газа, образующегося в электролизере при разложении электролита под действием электрического тока. Подобного типа кулонометры просты и удобны в работе. Так, водородно-кислородный кулонометр с платиновыми электродами позволяет измерять Q от 10 до 500 Кл с точностью 0,1%, если проводить электролиз в ячейке с двумя платиновыми электродами в водном растворе 0,1 моль/л К2804. Выделившийся объем газов измеряют, приводят к нормальным условиям и рассчитывают Q. [c.70]

    При определении больших количеств вещества 0общ бост В этом случае точность метода зависит от точности измерения Q. Если Qo T нельзя пренебречь, то точность определения зависит от воспроизводимости этой величины. В настоящее время вполне достижима точность измерений в пределах 0,002-0,05 %. Причем концентрация вещества, установленная с помощью потенциостатической кулонометрии, ближе к его истинной концентрации в растворе, чем в случае кулонометрии с контролируемой силой тока. Это [c.521]


Смотреть страницы где упоминается термин Кулонометрия точность: [c.214]    [c.217]    [c.23]    [c.55]    [c.76]    [c.34]    [c.38]    [c.553]    [c.471]    [c.228]    [c.31]   
Методы аналитической химии Часть 2 (0) -- [ c.523 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Кулонометрия

Кулонометры

Точность



© 2025 chem21.info Реклама на сайте