Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прибор цезия

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]


    Запись ИК-спектра производят на специальных регистрирующих спектрофотометрах серии ИКС иди на аналогичных приборах. Для съемок используются призмы из следующих материалов фторид лития (в области 2000...3800 см ), фторид калия (1300... 3800 см ), хлорид натрия (б50. .. 1300 см ), бромид калия (400. .. 650 см ), бромид цезия (250. .. 650 см ). [c.86]

    Атомы и молекулы газов при нагревании или при возбуждении их электрической искрой испускают световое излучение с определенными длинами волн. Такой свет, испускаемый атомами и молекулами в указанных условиях, и представляет собой их спектр испускания. На рис. 19.6 приведены спектры испускания щелочных металлов, ртути и неона. Спектры испускания элементов, особенно металлов, позволяют идентифицировать эти элементы, и спектроскопический химический анализ стал важным методом аналитической химии. Прибор, имеющий дифракционную решетку или призму для разложения света на составляющие его волны и для определения длины этих волн, называют спектроскопом. Схема простого спектроскопа приведена на рис. 3.15. При помощи такого прибора немецкий химик Роберт Вильгельм Бунзен (1811 —1899) открыл в 1860 г. рубидий и цезий. Изобретен спектроскоп был всего лишь за год до этого физиком Кирхгоффом, и цезий стал первым элементом, открытым спектральным методом. [c.65]

    Бромиды рубидия и цезия используются для изготовления монокристаллов, применяемых п оптических приборах, а также в лабораторной практике. [c.88]

    В солях цезия определяют п-10 % натрия в пламени пропан-бутан—воздух [172, 400]. Отмечается, что при определении натрия в бихромате цезия в пламени ацетилен—воздух цезий является спектроскопическим буфером [826]. Нуль прибора устанавливают по раствору бихромата цезия, содержащему 2500 мг/л соли. При применении низкотемпературного пламени водород—воздух снижается фон по сравнению с пламенами ацетилен—воздух и ацетилен—оксид азота(1) [1107]. Предлагается при анализе КС1 сп. ч. раствор КС1 наносить на микрозонд, определение проводить в пламени ацетилен— воздух [414]. Этим методом определяли из навески 100—200 мкг КС1 [c.172]

Рис. 298. Прибор для получения металлического рубидия (цезия) путем восстановления соответствующего хлорида кальцием. Рис. 298. Прибор для <a href="/info/1499395">получения металлического рубидия</a> (цезия) <a href="/info/1705233">путем восстановления</a> соответствующего хлорида кальцием.

    Некоторые химические элементы — гелий, рубидий, цезий, таллий и другие были обнаружены с помощью спектроскопа. Кто изобрел этот прибор  [c.276]

    Материалы с различной плотностью в разной степени ослабляют интенсивность радиоактивного излучения. В приборе фирмы Бендикс (США) у-излучение используется для определения содержания воды в цементном растворе, подаваемом по трубам [37]. Источником излучения служит цезий-137. Испускаемые им Р-лучи поглощаются в слое раствора, тогда как у-лучи, имеющие значительно более высокую проникающую способность, проходят через две стенки трубы и через слой раствора и могут быть зарегистрированы с помощью ионизационной камеры. Интенсивность излучения, прошедшего через текущий раствор, можно соотнести с его плотностью и с помощью градуировочного графика определить процентное содержание воды. Авторы указывают, что при содержании воды 30—40% точность измерений составляет = 0,2% при постоянной времени 12 с и 0,3% при постоянной времени 6 с. [c.533]

    В литературе описаны еш,е многие другие способы получения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800° С, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств активнейшего металла в специальном вакуумном приборе. [c.94]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Прибор для получения цезия. [c.510]

    Если у последовательно перекачиваемых нефтепродуктов плотности существенно отличаются, то для контроля применяют плотномеры. Зная плотности исходных нефтепродуктов и смеси, по формулам (134) и (135) можно определить их концентрации. Непрерывное определение плотности в потоке осуществляется специальными приборами [76]. Радиоактивные методы контроля заключаются либо в измерении плотности гамма-плотномерами, либо в применении трассеров или меченых атомов . В основу метода измерения плотности гамма-плотномерами положено физическое свойство поглощения гамма-квантов жидкостью. Пропуск через измеряемую среду пучка гамма-квантов заданной интенсивности и измерение их интенсивности на выходе дает возможность определять концентрацию смеси. В промышленных условиях в гамма-плотномерах применяют радиоизотопы кобальта Со и цезия Сз , а приемниками излучения служат сцинтилляционные и газоразрядные счетчики (Гейгера—Мюллера). Гамма-плотномеры позволяют монтировать все устройство на трубопроводе без нарушения его целостности и измерять плотность в пределах 0,7—0,9 т/м . Они применяются в основном для контроля нефтепродуктов, значительно отличающихся по плотности. [c.180]

    Цезий и рубидий применяются для изготовления фотоэлементов. В этих приборах, преобразующих лучистую энергию в энергию электрического тока и основанных на явлении фотоэлектрического эффекта (см. 23), используется способность атомов цезия и рубидия отщеплять валентные электроны при действии на металл лучистой энергии. [c.564]

    Применение металлического кальция связано с его высокой химической активностью. Он используется для восстановления из соединений некоторых металлов, например, урана, хрома, циркония, цезия, рубидия, для удаления из стали и из некоторых других сплавов кислорода, серы, для обезвоживания органических жггдко-стей, для поглощения остатков газов в вакуумных приборах. Кроме того, кальций служит легирующим компонентом некоторых свинцовых сплавов. [c.614]


    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Рубидий и цезий, прибор люнохроматор со средней разрешающей силой (УМ-2) [c.126]

    Термостатирование монохроматора при температуре выше комнатной позволяет поддерживать постоянную градуировку прибора и способствует лучшему сохранению призмы. Прибор ИКС-22 имеет только одну призму из Na l и рассчитан на диапазон 650—5000 см . Другие приборы этого типа выпускаются с призмами из бромистого калия, фтористого лития и иодистого цезия и рассчитаны на работу в соответствующих областях спектра. Так, например, прибор ИКС-22В имеет призму из sl и рассчитан на работу в области 200—500 см . [c.310]

    Калий, рубидий и в особенности цезий применяют в фотоэлементах. Это приборы, в которых электрический ток возникает за счет энергии света. Если на поверхность металла падает свет, то с нее вылетают электроны при условии, что энергия кванта падающего света равна (или больше) работе выхода электрона. Конечно, работа выхода электрона с поверхности различна для разных металлов, а потому и неодинакова энергия квантов, вызывающих отрыв электрона. Наименьшей работой выхода электрона обладают щелочные металлы, например у цезия она составляет всего лишь 1,18 эв. Принципиальная схема сурьмяно-цезиевого фотоэлемента представлена на рис. 9. Посеребренное дно вакуумного резервуара А) покрыто тонким слоем сплава цезия с сурьмой состава СззЗЬ ( ), соединенным с внешней цепью. Над [c.42]

    Рубидий и цезий используют главным образом для готовления фотоэлементов — приборов, непосредствен-преобразующих световую энергию в электрическую ис, 73). На внутренних стенках вакуумированногб [c.411]

    Установка в производстве жидкого хлора ОАО Уфахимпром приборов БПУ—1к, заменив БГИ-60 АП (гамма—реле ), содержащие мощные источники ионизирующего излучения Цезий-137, peniH.Tia вопросы экологической безопасности производства, сохранила точность и надежность работы. [c.254]

    Механический участок должен иметь оборудование — токарные, фрезерные, строгальные и шлифовальные станки для обработки запасных частей и подготовки контрольных образцов для механических испытаний и металлографических исследований. Служба контроля качества оснащается оборудованием и приборами, например разрывной машиной ГМС-20 для прочностных и пластических испытаний металла маятниковым копром МК-ЗОА для испытаний на ударную вязкость микроскопами МИМ-7 и ММР-2Р для проведения металлографических исследований прибором для определения микротвердости фаз типа ПМТ-3 твердомерами типа ТП и ТК для определения твердости по Виккерсу и Роквеллу рентгеновскими переносными аппаратами типа РУП-120-5-1, РУП-200-4-1, РИНА-1Д, ИРА-2Д, МИРА-2Д, гамма-аппаратом с источником излучения цезий-137, которые позволяют просвечивать металлы и сварные соединения толщиной до 60 мм ультразвуковыми [c.40]

    Если подключить круксову трубку с вольфрамовым катодом к источнику тока, как показано на рис. 4.12, то при достаточном напряжении между двумя электродами электроны будут вырываться из катода (отрицательного электрода) и перемещаться вдоль трубки к аноду (положительному электроду), образуя катодные лучи. Если теперь медленно снижать напряжение между электродами до тех пор, пока не прекратится образование катодных лучей, то наш прибор будет подготовлен к проведению интересного опыта. Осветим солнечным светом вольфрамовый электрод—при этом обнаружится, что электроны снова начнут перемещаться к положительному электроду. Экспериментируя подобным образом, мы убедимся, что в этом опыте важную роль играет длина волны света, которым освещают катод. Оказывается, что видимая часТь солнечного света не вызывает появления тока электроны покидают атомы вольфрама только под действием ультрафиолетовой части солнечного света. Если же изготовить катод из цезия или калия, то электроны будут вырываться из него под действием оранжевого или желтого света. Другими словами, для выбивания электронов из вольфрама необходима большая энергия или частота излучения, чем для выбивания электронов из калия. [c.65]

    Метод пламенной фотометрии применяется в основном ддя определения шелочньЕХ и щелочно-земельных элементов, из тяжелых металлов чаще всего этим методом определяют рубидий, цезий, стронций. Недостатками пламенно-фотомефического метода являются большая зависимость показаний прибора от температуры пламени, существенное наложение соседних линий спекфа, которое составляет около 2,5 %, что особенно сказывается, когда конценфация мешающих элементов в растворе в несколько раз превосходит конценфацию определяемого элемента. [c.249]

    Для получения чистых цезия, рубидия или калия смешивают sj rO (Rbj rO или К5СГО4) с порошком металлического циркония (в массовом отношении 1 4). Смесь спрессовывают в виде палочек и нагревают в условиях высокого вакуума в кварцевой трубке (или другом подходящем приборе). [c.1009]

    Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все ш,елочные металлы превраш,аются в легкорастворимые соединения — их можно выш,елачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция — отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия — хлорид, сульфат или карбонат. Но это еш,е только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия — крупнейшему немецкому химику Бунзену — так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4 1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более рациональный способ найден в 1890 г. известным русским химиком Н. Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического. [c.93]

    Схема прибора Акспнля для получения металлического цезия восстановлением его хлорида [c.94]

    В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на цезий имеется настоятельный спрос в ряде других весьма важных областей. К числу последних относится, в частности, медицина. Изотопом oбJ)aзyю-щимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер "Св), интересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он казался пригодным для лечения злокачественных опухолей, поскольку имеет определенные преимущества перед радиоактивным кобальтом-60 более длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В связи с этим приборы на основе Сз долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолютной радиохимической чистоты Сз, отсутствия в [c.98]

    Вообще говоря, приборы для измерения давления, пригодные для такой работы, стали доступны только недавно, после изобретения обратного (Байярд-Альперт) ионизационного манометра (описан в разделе IV, Д, 1). Однако уже в 1920-х годах Ленгмюр с сотр. [2] нашел способ измерения таких низких давлений, как 10 мм рт. ст., для одного частного случая — паров цезия, и, таким образом, заложил основы современного изучения кинетики адсорбции. [c.105]

    Диспергирующие устройства для инфракрасного излучения. Спектральные диспергирующие устройства, используемые в ИК-спектрометрии, очень похожи на применяемые при работе в ультрафиолетовой и видимой областях. Однако поскольку стекло плохо пропускает ИК-излучение, линзы и призмы (если их используют) спектрального диспергирующего устройства должны быть изготовлены из других материалов, лучше пропускающих ИК-излучение, таких, например, как каменная соль или бромид цезия. Перечень материалов, пропускающих ИК-излучение, и области наибольшего пропускания этих материалов представлены в табл. 21-1. Чтобы не использовать дорогостоящие и хрупкие материалы, указанные в табл. 21-1, в современных монохроматорах для ИК-спектрометрии применяют отражающую, а пе пропускающую (преломляющую) оптику. Поэтому в современных приборах более распространены дифракционные решетки и вогнутые зеркала, а не призмы и линзы. В некоторых ИК-спектрофотометрах особого назначения спектральные диспергирущие устройства вообще отсутствуют. [c.730]

    X 10x2 мл1, колеблющиеся в плоскости промежуточного изображения источника света с амплитудой 10 мм и частотой 5 гц) и селективно отражающий сменный фильтр 3. Приемником служит ОАП-2 с окном из йодистого цезия (для участка 20—55 мк) или из кристаллического кварца (область 50—130 мк). Излучение разлагается в спектр двумя сменными решетками 4 (12 и 6 штрих мм), работающими в области 25—55 и 50—135 мк соответственно. Реальная разрешающая сила такого прибора оказалась равной 100. [c.281]

    Основные научные работы посвящены развитию общей химии и методов исследования химических веществ. Исследовал ( 837— 1842) органические производные мыщьяка. Установил формулу радикала какодила и изучил реакции окиси какодила с другими веществами, что послужило одной из предпосылок создания теории радикалов. Изобрел (1841) угольноцинковый гальванический элемент, с помощью которого осуществил электролиз расплавов ряда солей и получил чистые металлы (хром, марганец, литий, алюминий, натрий, барий, стронций, кальций и магний). Приготовил (1852) электролизом хлористого магния магнезию. Совместно с немецким физиком Г. Р. Кирхгофом разработал (1859) принципы спектрального анализа и с помощью этого метода открыл два новых химических элемента — цезий (1860) и рубидий (1861). Изобрел многие лабораторные приборы — газовую го- [c.85]

    Применение фотографической регистрации целесообразно при работе с ионами высоких энергий. Для определенных экспозиций имеется минимум энергии, различный для каждой массы, ниже которого не получается проявленное изображение. Бейнбридж [ 109] установил при изучении ионов щелочных металлов, что это напряжение изменяется от 460 эв для лития до 920 в для цезия, если использовать пластинки для рентгеноскопии. Однако если использовать пластинки Шумана, имеющие минимальную защитную пленку желатина, то порог напряжения падает до очень малой величины. Чувствительность обнаружения возрастает с увеличением энергии бомбардирующих ионов и максимальна для легких ионов (при данной энергии бомбардировки). Размер зерна эмульсии устанавливает предел достижимой разрешающей способности в приборе с определенной дисперсией масс, использующем фотографическую регистрацию. [c.205]

    Исследовались ионно-молекулярные реакции в системах метан, метанол, вода, аргон и криптон с иодом [237], галогенными солями щелочных металлов [354], азотом, кислородом, окисью углерода, двуокисью серы, двуокисью углерода, карбонилсульфидом и сероуглеродом [89] натрий, калий, рубидий и цезий с водородом, дейтерием и кислородом [79]. Исследовалось взаимодействие атомов аргона с одно- и двузарядным неоном и аргоном [5] водород, кислород, вода и их бинарные смеси [144] триэтилалюминий и октен-1 [387] атомы азота с озоном, молекулярные ионы водорода с водородом, азотом гелием, аргоном и криптоном [391]. Гиз и Майер [210] исследовали ионно молекулярные реакции в приборе, в котором первичный пучок пересекал продольно ионизационную камеру. Ирза и Фридман [269] изучали диссоциацию НВ", вызванную столкновением. Филд [173] описал ионно-молекулярные реакции высшего порядка и получил масс-спектр этилена при сверхвысоком давлении. Бейнон, Лестер и Сондерс [45] исследовали ионно-молекулярные реакции разнообразных органических кислород- и азотсодержащих соединений они установили, что наиболее значительными пиками в их масс-спектрах являются пики с массой на единицу больше молекулярной. Беккей [34] исследовал ассоциацию воды и ионно-молекулярные реакции, используя ионный источник с ионизацией на острие. Хенглейн и Мучини [238] проанализировали значение ионно-молекулярных реакций в радиационной химии. [c.664]

    В 1860 г. немецкие ученые Р. Бунзен и Г. Кирхгоф с помощью спектрального анализа обнаружили четвертый щелочной металл — цезий (от латинского слова не-бесно-голубой ), названный так, потому что в синей области спектра он дает две характерные линии. А в 1861 г. был открыт рубидий (от латинского темно-красный -, его характерные линии расположены в красной части спектра. В чистом виде металл рубидий был выделен Бунзеном только в 1863 г., а цезий — в 1882. Эти металлы очень чувствительны к свету, поэтому они и нашли применение в фотоэлектронике для изготовления фотоэлементов. Их применяют также и как газопоглотители при создании глубокого вакуума в приборах. [c.200]

    Резонансная линия цезия 8521 А является наиболее длинноволновой из линий, применяемых в атомно-абсорбционном анализе. Некоторые модели атомно-абсорбционных спектрофотометров не предназначены для работы в этой области спектра. Другие приборы оказываются весьма чувствительными к помехам из-за рассеянного света. Эти помехи можно устранить с помощью стеклянного фильтра (например, orпing 3-67), который не пропускает излучение длин волн, меньших 6000 А. По данным Гейтхауза и Уиллиса [19], чувствительность линии цезия 4556 А равна 20 мкг мл. [c.144]

    Цезиевые фотоэлементы пригодны к эксплуатации в широком интервале спектра и отличаются большой чувствительностью. По сравнению с селеновыми они обладают рядом преимуществ и прежде всего отсутствием инерции. Цезиевые фотоэлементы и фотоумножители применяются в телевидении, радиолокации, звуковом киио, в приборах для автоматического контроля различных процессов, радиотехнике. Светочувствительность цезия предопределила еще одну область его применения— в люминесцентных трубках и экранах различного типа и назначения. Ряд соединений цезия используется в инфракрасной спектроскопии, в оптических приспособлениях для приборов ночного видения и др. Цезий имеет исключительно важное значение для развития современной электроники, оптики, радиохимии и других областей техники. Общий расход этого металла, однако, невелик и измеряется обычно несколькими сотнями килограммов в год, так как расход цезия иа изготовление одного фотоэлемента 0,1—0,01 г. [c.60]

    Хроматограф Хром-4 выпускается чехословацкой фирмой Labo-ratorni Pristrojl . Термостат этого прибора может работать при температурах от комнатной до 400 °С, причем регулирование производится с точностью до 0,2 °С. В термостате расположены две параллельно работающие колонки, соединенные с камерами дифференциального пламенно-ионизационного детектора или катарометра, закрепленных на съемных крышках. Пламенно-ионизационный детектор можно преобразовать в термоионный, надев на горелку наконечник из соли натрия, калия, рубидия или цезия. Это позволяет получить повышенную чувствительность к соединениям, содержащим фосфор, азот, галогены и серу (в зависимости от материала наконечника). Прибор может работать при программировании температуры со скоростью от 1 до 2 К/мин. Имеется электронный интегратор аналогового типа с регистрацией интегральной кривой на диаграммной ленте. [c.183]


Смотреть страницы где упоминается термин Прибор цезия: [c.165]    [c.251]    [c.672]    [c.178]    [c.91]    [c.286]    [c.13]    [c.94]    [c.672]    [c.533]    [c.164]    [c.84]   
Работа со ртутью в лабораторных и производственных условиях (1972) -- [ c.96 , c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте