Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, определение в воде

    ОПРЕДЕЛЕНИЕ 1.10-8% ЦИРКОНИЯ В ВОДЕ И ЫО-7% В КИСЛОТАХ [c.132]

    Определение ЫО-8% циркония в воде и 1 10- % в кислотах, [c.237]

    А Сплавление с тетраборатом особенно эффективно для разложения кислородных соединений алюминия (корунд, рубин, сапфир), циркония (бадделеит), кремния (турмалин), олова (касситерит), ниобия, тантала Д, циркониевых руд, минералов РЗЭ и шлаков. Сплавление с тетраборатом можно применять при определении железа (П) в силикатах, однако следует иметь в виду, что некоторое количество железа (И) окисляется, даже если сплавление проводят в атмосфере инертного газа [4.364]. Смесь расплавов боросиликатного стекла и вольфрамата натрия была использована для определения воды в силикатах [4.365]. Условия разложения некоторых материалов тетраборатом натрия приведены в табл. 4.19. [c.98]


    Степень гидратации фосфорномолибденовой кислоты, соли Рейнеке, молибдата аммония хлористого цирконила и азотнокислого цирконила точно неизвестна, а их гидраты в большинстве случаев термически неустойчивы поэтому не представлялось возможным делать обоснованные заключения относительно их взаимодействия с реактивом Фишера. Результаты опытов с хлористым цирконилом не свидетельствуют о протекании реакций, мешающих определениям воды, однако для нитрата были получены значения, в 2 раза превышающие значения, вычисленные для предполагаемого дигидрата эти результаты не получили объяснения. [c.265]

    Определение циркония. Для построения градуировочного графика готовят пять растворов, содержащих 0,01 0,02 0,03 0,05 и 0,07 мг Zr . В мерные колбы вместимостью 100 мл вводят пипеткой 1, 2, 3, 5, 7 мл стандартного раствора хлорида циркония, добавляют в каждую колбу 5 мл 0,5%-ного раствора желатины, 5 мл 0,02%-ного раствора арсеназо I, разбавляют до метки дистиллированной водой и тщательно перемешивают. В качестве раствора сравнения используют 25 мл 4M раствора НС1 и все реактивы, указанные выше, за исключением определяемого элемента, разбавленные до метки дистиллированной водой в мерной колбе вместимостью 100 мл. Измеряют оптическую плотность А растворов на фотоэлектроколориметре с желтым светофильтром (Хмакс = 580 нм), используя кюветы с тол- [c.234]

    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]

    Средние фосфаты всех металлов (за исключением щелочных металлов) труднорастворимы в воде. Однако для осаждения -средних фосфатов необходима согласно произведению растворимости определенная минимальная концентрация ионов Р04 . Поэтому на процесс осаждения фосфатов металлов можно влиять изменением концентрации протонов и связанной с ней концентрации ионов Р04 . Кислые фосфаты водорода, как правило, растворимы гораздо лучше, чем средние. В сильнокислой среде все фосфаты (кроме фосфата циркония) легкорастворимы. Сведения о труднорастворимых фосфатах содержатся в соответствующих разделах, посвященных химии металлов. Поэтому ниже приведены Пр лишь для некоторых фосфатов. [c.551]


    Для определения содержания ионов 2г в анализируемой смеси из мерной колбы, содержащей элюат 2, отбирают 5 мл и переносят в мерную колбу вместимостью 100 мл. Прибавляют 5 мл 0,5%-ного раствора желатины, 5 мл 0,02%-ного раствора арсеназо I и доливают до метки дистиллированную воду. Раствор сравнения содержит 25 мл 4 Ai раствора НС1 и все предусмотренные методикой компоненты, за исключением определяемого элемента, добавленные в той же последовательности. Оптическую плотность раствора измеряют на фотоэлектроколориметре (Л,макс = 580 нм), толщина слоя кювет / = 50 мм. Пользуясь градуировочным графиком, определяют содержание циркония в исследуемом растворе. [c.235]

    Применяется также титрование раствором нитрата торня или нитрата циркония ири точном определении фторидов, которые оказывают на человека очень сильное физиологическое действие. Этим методом определяют фториды в питьевой воде и пищевых продуктах. [c.329]

    Иногда для определения тория или циркония применяют 0,05 или 0,025 7о-ные растворы арсеназо III. Для определения циркония в свинцовых и титановых концентратах готовят раствор 100 мг арсеназо III растворяют при нагревании в 60—70 мл воды в мерной колбе вместимостью 100 мл и доводят раствор до метки 2 н. раствором НС1. Для определения циркония в сталях 0,1 г арсеназо III растворяют в мерной колбе вместимостью 100 мл в неболь-щом количестве воды, добавляют по каплям 10 7о-ный раствор карбоната натрия до наступления голубого окрашивания и нагревают. Затем добавляют по каплям НС1 (1 1) до перехода окраски в красно-фиолетовую и разбавляют водой до метки. [c.118]

    Применяют для фотометрического определения кальция и комплексометрических титрований кальция, никеля, кобальта и меди, а также для определения жесткости воды. Применяют для качественных определений стронция, циркония (IV), тория (IV) и РЗЭ. [c.175]

    Хромазурол S — темно-красные кристаллы (порошок). Хо-юшо растворим в воде и этаноле, нерастворим в эфире. Наименьшая растворимость при 1,2—2 М соляной кислоты. Применяют для дифференциальной спектрофотометрии AF+, а также в качестве комплексометрического индикатора для определения алюминия (П1), меди (И), железа (П1), магния (И) и циркония (IV). Фотометрически определяют А1 + при pH 5,6—5,8. Чувствительность реакции на алюминий составляет 0,006 мкг А1 + в 1 мл раствора. [c.228]

    Разработаны экстракционно-фотометрические методы определения марганца в уране и его соединениях, алюминии [198, 1170, 1256], цирконии и его сплавах [684], ультрачистой воде [1255], железе и сталях [244]. [c.66]

    В обстоятельной работе Якеля в 1958 г. [284] изучены гидриды и дейтериды титана и циркония в области составов МеНг. Полное насыщение металла газом проверялось анализом водорода методом сжигания с последующим весовым определением воды. Авторами было установлено максимальное насыщение водородом, соответствующее составам Т1Н1,э9 Т10ь98, 2гНь92. [c.82]

    Кальциево-магниевая соль инозитгексафосфорной кислоты (фитин) осаждает ионы циркония в виде белого хлопьевидного осадка, растворимого в щавелевой кислоте и фториде натрия и практически нерастворимого в минеральных кислотах и в щелочах. Предельное разбавление 1 200 ООО. Растворимость соединения циркония в воде меньше 10- моль/л при комнатной температуре. Осадок хорошо отфильтровывается и промывается. Определение заканчивают прокаливанием соединения циркония при 1000—1050 °С до 22г02-ЗР205. Эмпирический фактор пересчета [c.155]

    В табл. 1 приведены результаты экспериментального исследования коррозионной стойкости тройных сплавов циркония с добавками ниобия и ванадия. Несм отря на некоторый разброс экспериментальных точек у большинства образцов вес увеличивается линейно со временем. При определении скорости коррозии исходили из того, что все продукты коррозии сохранялись на поверхности образцов. Характер продуктов коррозии не всегда был одинаков вследствие различного качества обработки поверхности. Как показали проведенные испытания, одним из существенных факторов, влияющих на стойкость циркония в воде высоких параметров, является чистота обработки поверхности. На внешней поверх- [c.91]

    Высокая стойкость циркония в деаэрированной горячей воде и паре представляет особую ценность при использовании в ядерной энергетике. Металл или его сплавы, как правило, заметно не разрушаются в течение длительного времени при температурах ниже 425 °С. Характерно, что скорость коррозии невелика в некоторый начальный период. Однако после определенной продолжительности контакта (от минут до нескольких лет — в зависимости от температуры) скорость коррозии резко возрастает. Как отмечают, это явление наблюдается на чистом и содержащем примеси цирконии после того, как потери металла достигают 3,5— 5,0 г/м . Аналогичное повторное ускорение окисления может происходить при еще больших потерях металла [551. Если цирконий содержит примеси азота (>0,005 %) или углерода (>0,04 % то эти процессы протекают при более низких температурах [56 Негативное влияние азота ослабляют, легируя металл 1,5—2,5 % олова и уменьшая содержание железа, никеля и хрома. Такие сплавы называют циркалоями (см. выше). [c.380]


    Аналогичная реакция применяется при определении фтора. Ряд методов определения фтора основан на образовании малодиссоциированных фторидов тория или циркония (ТЬР или ZrFJ. В качестве индикатора берут ализарин (натриевая соль ализаринсульфокислоты), который является очень чувствительным реактивом по отношению к торию и цирконию, образуя с ними соединения, окрашенные в красно-фиолетовый цвет. Испытуемый раствор фтористого натрия титруют в слабокислой среде рабочим раствором азотнокислого торня или циркония. Метод применяют, главным образом, для определения малых количеств фтора в природной воде и в различных материалах. [c.427]

    Другие реакции имеют более широкий диапазон применения. Например, малорастворимая в воде хлораниловая кислота, растворы которой интенсивно поглощают свет в зеленой области спектра, образует осадки с такими катионами, как кальций, стронций, барий и цирконий. Уменьшение оптической плотности раствора при образовании осадков можно использовать для определения катионов. Этот реагент пригоден и для колориметрического определения анионов. Например, малорастворимый хлоранилат бария в присутствии следовых количеств сульфата переходит в нерастворимый в воде сульфат бария, а эквивалентное количество хлораниловой кислоты переходит в раствор. Содержание ее можно определить по увеличению светопоглоще-ния раствора. Аналогично можно проводить анализ хлоридов и фторидов в растворе, используя хлоранилаты ртути или лантана. [c.366]

    Для определения циркония в сплавах берут две навески его по 0,1 г, растворяют каждую в стакане из жаропрочного стекла емкостью 150— 200 мл, добавляют 0,3 г сульфата аммония и 3 мл Н. ЗОд (пл. 1,84), нагревая содержание стакана на электрической плитке. После разложения сплава добавляют 0,1—0,2 мл перекиси водорода, раствор переводят в мерную колбу емкостью 100 Мо 1 и объем раствора доводят водой до метки. В две мерные колбы емкостью 50 мл отбирают в каждую аликвотные части по 5—10 мл, содержащие не более 50 мкг 2г, и добавляют 1 н. Н2804 до объема 20 мл. В одну из колб добавляют 0,2 мл раствора комплексона, тщательно перемешивают, затем в обе колбы вводят по 1 мл раствора ксиленолового оранжевого и доводят объем раствора водой до метки кислотность раствора должна быть 0,4 н. по серной кислоте. Оптическую плотность этого раствора измеряют на фотоэлектроколориметрах ФЭК-56, ФЭК-60 или спектрофотометрах различных марок при Х535 нм относительно раствора, в который не вводится комплексон. Содержание циркония находят по градуировочному графику. Результаты параллельных определений ( не менее четырех) обрабатывают методом математической статистики. [c.225]

    Ионы [Ме(Н20) ,] не имеющие координированных ОН "-групп пли анионов, существуют только в определенных условиях, например в перхлоратных растворах с концентрацией металлов не более 10 г-атом/л и концентрацией водородных ионов 2 г-ион/л,и выше. В присутствии же анионов-комплексообазователей (N03 , С1 и др.) образуются комплексные ионы типа [Me(NOз)] [Ме(МОз)21 и т. д. С понижением кислотности в растворе появляются ионы [Ме(ОН)] +, Аналогично ведет себя и гафний, хотя степень гидролиза его растворов несколько ниже, чем у циркония первые константы гидролиза для них 1,33-10 и 2,10-10 . При растворении солей 2г и Н в воде равновесие устанавливается крайне медленно. Например, pH раствора оксихлорида циркония становится более или менее постоянным только через сутки после его растворения. В разбавленных растворах солей цирконий преимущественно находится в виде ионов [2г(ОН)з]  [c.282]

    Количество воды, остающейся в осадках гидроокисей циркония и гафния, зависит от способа получения и длительности процесса старения. При медленном нагревании гидроокиси циркония обезвоживание, происходящее в широком интервале температур и заканчивающееся при 300°, сопровождается непрерывным уменьшением давления пара над осадком. Непрерывно уменьшается и число молекул воды, приходящихся на один атом 2г,что указывает на отсутствие гидратов определенного состава. Гидроокись циркония, полученная осаждением из растворов и подвергнутая длительному старению, обнаруживает признаки кристаллического строения. Это позволило ряду авторов рассматривать ее как гидратированную двуокись циркония (2г02- гНгО) . Основой ее структуры являются фрагменты 2гОа- 2Н2О и 2гО(ОН), связанные между собой донорно-акцепторной связью и образующие кристаллический скелет  [c.283]

    Карбонаты. Ион СОз обладает достаточно высокой способностью к комплексообразованию с цирконием и гафнием. В определенных условиях он может замещать сульфатогруппу. Но в отличие от сульфатных соединений циркония средние карбонаты получить нельзя. Все карбонатные соединения циркония и гафния плохо растворяются в воде и довольно хорошо — в кислотах. [c.288]

    Для тушения его используют фторид кальция, для тушения непригодны азот, диоксид углерода и хладоны. Плутоний еще более чувствителен к возгоранию, чем уран. Уран, торий и плутонии весьма пирофорны в порошкообразном состоянии и легко возгораются от разрядов статического электричества. Компактный плутоний самовоспламеняется при 600 °С. Цирконий и магний значительно более активны и практически не горят только в атмосфере благородных газов, например аргона. Графит возгорается с большим трудом и только в накопленном состоянии, горит он гетерогенно, при высоких температурах реагирует с водяным паром. При температурах до 200—250 °С в графите под воздействием проникающей радиации искахоет-ся структура кристаллической решетки, и вследствие этого накапливается скрытая энергия (эффект Вигнера). Если эта энергия регулярно не рассеивается путем отжига (повышения температуры), то она может накапливаться до определенной точки и затем внезапно выделяться с резким повышением температуры, которая может привести к пожару. Горение графита ликвидируют обычно диоксидом углерода или аргоном. Можно применить и большие массы воды. Высокая пожарная опасность создается при применении в качестве теплоносителя натрия или калия. Хотя они горят медленно, но тушение их затруднено и требует специальных средств пожаротушения. [c.93]

    Изучение Г. радиоактивных процессов в земной коре и изотопов привело к разработке абс. шкалы геол. времени. Установлены возраст Земли как планеты (ок. 4,5 млрд. летХ длительность отдельных геол. эр и периодов, отдельных событий ранней человеческой истории. Определение содержания радио- и нерадиоактивных изотопов в горных породах, рудах, минералах, водах, живых организмах, атмосфере позволило решить мн. задачи наук о Земле (генезис руд, почвоведение, морская геология и др.). Эти вопросы составляют содержание Г. изотопов. Радиационно-хим. явления наблюдаются во многих минералах. С воздействием гл. обр. излучений и и 1Ъ связывают частичную потерю кристаллич. структуры у циркона, торита, браннерита и др. радиоактивных минералов. [c.522]

    При определении алюминия в стали Рэй и др. [1102] основную массу железа удаляют экстрагированием эфиром из раствора, 6М по НС1. Остатки железа и некоторые другие элементы удерживают в растворе смесью тиогликолевой кислоты и роданида аммония. Титан и цирконий предварительно отделяют гипофосфитом натрия и бромной водой Сг, V, Мо, 5п, Мп, 2п, N1 и Со в тех количествах, в которых присутствуют в углеродистых сталях, не мешают. По данным авторов, при осаждении А1РО4 при pH 3,7—3,9 не мешают 500-кратные количества Сг, V, Мп, N1 и Со. Отделение от Ре, Сг, V, 5п, Мп, 2п, Мо, N1 и Со настолько полное, что, как правило, переосаждение не требуется. Для получения правильных результатов необходим строгий контроль pH. Лучшие результаты получаются при pH [c.60]

    При определении циркония по флуоресценции цирконий-моринового комплекса после сплавления 0,25 г руды с содой и выщелачивания плава водой к раствору добавили 6 М НС1 и довели объем до 25,00 мл. В мерную колбу вместимостью 25,00 мл отобрали 2,00 мл анализируемого раствора, добавили тиоглико-левую кислоту для восстановления Fe(III), концентрированную НС1, спиртовой раствор морина и довели водой до метки. Таким же образом приготовили стандартный раствор с содержанием [c.221]

    Для фотометрического определения фторид-иона в воде готовят циркон-ализариновый реактив растворяют 0,322 г хлороксида циркония ггОСЬ-вНгО в 250 мл воды (раствор 1). Растворяют 2,052 г ализарина С в 1500 мл воды (раствор 2). В мерную колбу вместимостью 250 мл отбирают 25 мл раствора 1 и добавляют постепенно при постоянном размешивании 150 мл раствора 2. Раствор в колбе доливают до метки смесью 4 н. раствора H2SO4 и 4 н. раствора НС1 (1 1). Пользуются раствором не ранее чем через день. [c.108]

    Цианформазан-2—коричневый кристаллический порошок, не плавящийся при нагревании до 250 °С. Хорошо растворим в воде, плохо в этаноле и нерастворим в других органических растворителях. При хранении во влажной атмосфере присоединяет две молекулы кристаллизационной воды, образуя дигидрат — тонкие иглы красного цвета. Кислые растворы имеют оранжевую окраску, щелочные — фиолетовую. Реактив применяют для фотометрического определения галлия (III), циркония (IV), ванадия (V), ниобия [c.230]

    Определение плутония (IV). Четырехвалентный плутоний количественно осаждается в виде шестиводного оксалата [48, стр. 348]. Растворимость оксалата в воде равна 10,3-10" моль/л [57, 168]. В отличие от трехвалентного оксалата, остаточная концентрация плутония в растворе при осаждении оксалата плутония (IV) с увеличением кислотности уменьшается и оптималь-. ная концентрация HNO3 или H I составляет 3—4 М. Растворимость оксалата плутония(IV) существенно понижается в присутствии этилового спирта. Метод позволяет определять плутоний в присутствии большинства элементов за исключением тория, циркония и редкоземельных элементов. Оксалаты некоторых элементов (Ва, Мп, Со, Ni, РЬ, Sn, Sr), которые осаждаются в нейтральных растворах, остаются в растворе при достаточной концентрации кислоты >3N). При небольшом содержании указанные элементы полностью отделяются при одном осажде- [c.258]


Смотреть страницы где упоминается термин Цирконий, определение в воде: [c.99]    [c.94]    [c.270]    [c.64]    [c.304]    [c.402]    [c.293]    [c.26]    [c.329]    [c.290]    [c.366]    [c.342]    [c.107]    [c.224]    [c.322]    [c.117]    [c.218]    [c.123]   
Санитарно химический анализ загрязняющих веществ в окружающей среде (1989) -- [ c.240 ]




ПОИСК







© 2025 chem21.info Реклама на сайте