Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы реакционные

Рис. VI. 11. Схемы соединения реактора, колонки и детектора , применяемые в аналитической реакционной газовой хроматографии [38] Рис. VI. 11. <a href="/info/97576">Схемы соединения</a> реактора, колонки и детектора , применяемые в <a href="/info/1161725">аналитической реакционной газовой</a> хроматографии [38]

Рис. 7.1. Одна из стандартных установок для классических фотохимических экспериментов с использованием ближнего УФ-излучения / — источник света, 2 — кварцевая линза, 3 — светофильтр, 4 — кварцевое окно, 5 — кварцевая реакционная кювета, 6 — термостатированный держатель кюветы, 7 — детектор излучения, 3 — система обмена газа. Рис. 7.1. Одна из стандартных установок для классических фотохимических экспериментов с использованием ближнего УФ-излучения / — <a href="/info/128501">источник света</a>, 2 — кварцевая линза, 3 — светофильтр, 4 — <a href="/info/892722">кварцевое окно</a>, 5 — <a href="/info/1073623">кварцевая реакционная</a> кювета, 6 — термостатированный <a href="/info/829852">держатель кюветы</a>, 7 — <a href="/info/380788">детектор излучения</a>, 3 — система обмена газа.
    Для групповой идентификации применяют реакционную газовую хроматографию (превращение определенных групп соединений, их удаление из анализируемой смеси, элементарный анализ, качественные реакции в сочетании с хроматографическим анализом) анализ на селективных фазах или на приборах с селективными детекторами, имеющими повышенную чувствительность к соединениям определенных классов. [c.97]

    На рис. 43 приведена общая схема установки для изучения хемилюминесценции химических реакций. Вокруг реакционного сосуда устанавливаются сферические зеркала, фокусирующие световой поток на внешнюю грань светопровода. Светопровод направляет свет на детектор, которым чаще всего служит фотоэлектронный умножитель. Используемые обычно фотоумножители типа ФЭУ-38 регистрируют излучение в видимой области (300—800 нм) [c.121]

    Метод отбора проб приходится применять во всех случаях, когда дтя проведения количественного определения каких-либо компонентов необходимо предварительно разделить реакционную смесь. Наиболее эффективными методами разделения явля[отся различные виды хроматографии. Если все анализируемые компоненты обладают достаточной летучестью, их разделяют с помощью газожидкостной хроматографии. Современные газо-жидкостные хроматографы являются высокоавтоматизированными приборами, которые позволяют разделить за короткое время достаточно сложные смеси, идентифицировать компоненты по времени удерживания и измерить количество каждого из них с по.мощью высокочувствительных детекторов. [c.60]

    Этот простейший вид аналитической реакционно газовой хроматографии не требует каких-либо переделок или изменений стандартной газовой схемы хроматографа при работе с детектором по теплопроводности . Следует только предусмотреть подключение к линии сброса газового потока в атмосферу специальной распределительной гребенки, связанной с серией стеклянных микрореакторов — небольшого размера пробирок или пенициллиновых склянок. В каждую пробирку (склянку) перед началом опыта помещают свежеприготовленный раствор специфического группового реагента. Пробирки соединяют с распределительной гребенкой с помощью стальных капилляров (медицинских игл) таким образом, чтобы при выполнении анализа поток газа из [c.190]


    Возможности методики вычитания могут быть расширены последовательным включением в газовую схему нескольких реакционных петель с различными реагентами (что равнозначно заполнению одной петли несколькими слоями поглотителей) или проведением анализа на хроматографе с двумя параллельными газовыми линиями и детекторами. [c.193]

    Если в результате химической реакции возникает световое излучение, мы имеем дело с хемилюминесценцией. Реакционная ячейка в этом случае является источником света, и хемилюминесцентный спектрофотометр обычно состоит просто из монохроматора и детектора. [c.163]

    Выше уже отмечалась недостаточность (а иногда и невозможность) идентификации компонентов сложных смесей лишь по параметрам удерживания. Использование рассмотренных методов реакционной газовой хро-матографии и селективных детекторов полезно главным образом в групповом анализе, т. е. при отнесении неизвестных компонентов пробы к тому или иному классу химических соединений. [c.198]

    Газовая хроматография является наиболее пригодным для метода конкурирующих реакций способом анализа. Высокая чувствительность детекторов позволяет работать при малых глубинах превращения. В результате не только удается упростить расчет переходом от уравнения (7.34) к более простому (7.35), ио и избежать ошибок, связанных с возможностью влияния продуктов на скорость исследуемых реакций. Важное значение для метода конкурирующих реакций имеет также универсальность хроматографического анализа. Не удивительно поэтому, что больишнство оценок констант и относительной реакционной способности методом конкурирующих реакций выполнено на базе газохроматографических измерений. [c.374]

    Прибор состоит из испарительной камеры, реакционной камеры, системы осушки газа-носителя, детектора по теплопроводности, регистрирующего прибора, а также блока питания и электронных терморегуляторов. [c.101]

    Разработана методика определения реакционной способности нефтяного кокса по отношению к воздуху с применением хроматографа ЛХМ-8МД с детектором по теплопроводности. Кварцевый реактор с навеской испытуемого кокса имеет наружный электрообогрев и соединен последовательно, с рабочей колонкой в газовой схеме хроматографа..  [c.83]

    При разработке хроматографической аппаратуры в последние годы наметилась тенденция к созданию сложных, универсальных хроматографов, предназначенных для решения самых различных аналитических задач. Эти хроматографы, как правило, комплектуются несколькими детекторами различных типов, широким набором колонок (набивных, капиллярных и препаративных), специальными приставками (пиролитическими, реакционными, препаративными), счетно-решающими устройствами для обработки результатов анализа и другими вспомогательными узлами и приспособлениями. У большинства последних моделей хроматографов предусмотрен изотермический или программированный режим работы колонок с температурным пределом до 300—500 0. [c.194]

    При протекании быстрых реакций в несегментированном потоке в коротких трубках основное — это смешение реакционной смеси до ее поступления в кювету детектора. Для смешения применяют специально сконструированные тройники, на выходе которых устанавливают свернутую в спираль трубку ( смесительная спираль ). Обычно применяют тефлоновые спирали с внутренним диаметром от 0,2 до 0,5 мм и длиной 10 м. Некоторые производные могут быть получены и без добавления реагента, непосредственно в хроматографе за счет фотохимической реакции. [c.72]

    Различают два типа формирования каталитического отклика -катализ по току, приводящий к повышению чувствительности, и катализ по потенциалу, позволяющий менять селективность отклика. В обоих случаях отклик обусловлен процессами на границе раздела фаз, т е. в тонком реакционном слое, что выгодно отличает вольтамперометрический детектор от оптического, для которого необходим больший объем раствора. Предел обнаружения в этом случае может достигать 10 моль и даже ниже. Ш рис. 18.6 изображена схема амперометрической ячейки-детектора для измерений в потоке жидкости с одним или двумя рабочими электродами при их параллельном и последовательном подключении. [c.579]

    Адсорбция и определение реакционных газов Как видно из рис. 7.6-2, газовая смесь после блоков сжигания/восстановления состоит из Н2О, СО2, N2 и Не. Последовательно >даляя Н2О и затем СО2 по методу Прегля, можно определить количество реакционных газов с помощью трех специальных ДТП (детекторов теплопроводности). Вся процедура занимает 14 минут. [c.490]

    Хемилюминесцентный метод газового анализа для контроля окислов азота. Метод основан на реакции окиси азота и озона, которые подают одновременно в реакционную камеру, и является в настоящее время основным методом контроля окислов азота в атмосферном воздухе. Интенсивность хемилюминесцентного свечения (химической люминесценции) в области волн от 600 до 2400 нм с максимумом в районе 1200 нм, пропорциональная концентрации окиси азота, регистрируется фотоумножителем, используемым в качестве детектора. [c.213]


    Эта реакция является основной для рассматриваемой методики. Объем выделяющегося метана измеряют с помощью катаро-метра (детектора по теплопроводности газохроматографа). Чистый диметилцинк в этой реакции не применяют, так как этот реагент агрессивен и имеет низкую температуру кипения. ТГФ-ДМЦ отличается от других используемых металлоорганических соединений специфичностью к воде и ОН-группам, устойчивостью, безопасностью при хранении и работе, простотой получения. Реакционная способность ТГФ-ДМЦ в данной реакции [c.68]

    Оборудование. Газовый хроматограф с колонкой длиной около 70 см с насадкой 25% (по весу) силиконового масла 5Р"96 на носителе хромосорб (тип в работе [21] не указан) с размером зерен 30/60 меш. Детектор — катарометр, газ-носитель — гелий, скорость потока 90 мл/мин, температура колонки 51 °С. К хроматографу подключают реакционный сосуд, показанный на рис. 3.1, причем трубку А сосуда подсоединяют к источнику гелия, а - [c.133]

    В последние годы успешно разрабатываются методы непрерывного контроля газовых смесей с использованием реакционной газовой [160, 1146], газовой хроматографии [303, 561, 703, 847] и рентгенофлуоресцентного метода [809]. В газовой хроматографии используются в качестве детекторов катарометры [303, 561], пламенно-фотометрические [847] и плазменно-ионизационные [703] детекторы. [c.177]

    В зависимости от решаемой аналитической задачи (отнесение к индивидуальным химическим соединениям пиков на хроматограмме смеси, состав которой ориентировочно известен групповой анализ полная идентификация компонентов) с целью качественного анализа могут использоваться как чисто хроматографические приемы (сравнение параметров удерживания, получение для групп веществ коррелящ)онных зависимостей типа параметр удерживания — физико-химические характеристики, использование селективных детекторов, реакционная хроматография, пиролитическая хроматография), так и варианты, сочетающие газовую хроматографию с другими физико-химическими методами анализа (препаративный сбор фракций с их последующим исследованием, хромато-масс-спектрометрия, сочетание хроматографа с ИК-спектрометром и др.). На современном уровне развития методологии аналитической химии, аналитического приборостроения, вычислительной техники наибольшую достоверность идентификации обеспечивают комбинированные методы. Однако их аппаратурное оформление достаточно сложно, приборы имеют высокую стоимость и реально эксплуатируются только в крупных аналитических центрах либо при решении неординарных задач. Поэтому рассматриваемые ниже чисто хроматографические приемы качественного анализа и в настоящее время широко применяют в аналитической практике. [c.214]

    Авторы статьи [166] описали разделение орто-, ди- и трифосфатов методом ВЭЖХ на ионооб.меннике с последующим обнаружением при помощи реакционного детектора. Реакционная установка была снабжена смесительной спиралью. Гидролиз авторы статьи проводили при 98 С, реакцию с молибдатом — при 82°С. Для восстановления примеияли аскорбиновую кислоту. Концентрацию образующегося молибденового синего измеряли в фотометре с проточной ячейкой при 830 нм. [c.113]

    Пучок излучения от лампы с устройством для выделения длины волны направляется на фотохимически активную реакционную смесь. В случае количественных измерений реакционная смесь обычно находится в кювете с двумя параллельными плоскими окнами, расположенными перпендикулярно падающему пучку света. Если сам пучок близок к параллельному, то свет поглощается равномерно по всему объему образца. Непоглощенный свет выходит через заднее окно кюветы. В стан-дарной экспериментальной установке прошедшее кювету излучение попадает на детектор, измеряющий его интенсивность (см. ниже). На рис. 7.1 показано одно общепринятое расположение элементов оптической схемы установки для фотохимических экспериментов в ближней УФ-области. Обратите внимание элементы расположены так, что световой пучок почти параллелен (возможно слегка расходится) и поэтому почти полностью, но все же не совсем, освещает переднюю стенку реакционной кюветы. [c.185]

    Выбор газа-носителя обусловлен в основном принципом действия детектора. Возможность применения газа-носителя определяется его физическими и химическими свойствами коэффициентом диффузии, вязкостью, химической инертностью, сорбционными свойствами. Важную роль играет реакционная способность газа-носителя, которая зависит не только от его свойств, но и от характера исследуемых веществ. Так, например, воздух окисляет альдегиды и олсфины уже нри невысоких температурах, ио инертен но отнощению к определенным углеводородам и фторсодержащим соединениям. Можно сформулировать следующие требования, предъявляемые к газам-носитслям  [c.340]

    Подготовленная проба нефти с помощью шприца-дозатора в количестве 2 мл вводится в нижнюю часть испарительной камеры. Сюда же подается через систему осушки воздух или азот в качестве газа-носителя со скоростью 200 мл1мин. В испарительной камере поддерживается температура 150° С. Пары воды, легких углеводородов и газ-носитель из испарительной камеры поступают в реакционную камеру, где проходят через слой гидрида кальция, расположенный на вибрационной решетке. В этой камере поддерживается температура 90° С. Образовавшийся водород, газ-носитель и пары бензина через холодильник поступают в детектор по теплопроводности. Результаты анализа регистрируются потенциометром. [c.101]

    Как указывает Калмановский, имеется, однако, различие между прямым окислением без предварительной термической диссоциации и окислением с предшествующей термической диссоциацией молекул углеводородов. В последнем случае образуется существенно больше ионов. Прямое окисление имеет место преимущественно в гомогенном пламени при сгорании смеси водорода с кислородом. Предварительная диссоциация с последующим окислением наблюдается в диффузионном иламени. Это пламя имеет реакционную зону, в которой происходит сгорание выходящего из сопла детектора водорода с диффундирующим извне кислородом. Между этой зоной и холодным ядром пламени из чистого водорода или водорода с газом-носителем находится зона, которая нагревается от горячей реакционной зоны, но не содержит кислорода, так что в ней не происходит сгорания, но, по-видимому, имеет место предварительное термическое разложение молекул углеводородов, выходящих из сопла. При этом образуются углеродсодержащие радикалы, которые, вероятно, находятся в возбужденном состоянии, облегчающем последующую ионизацию. Эти углеводородные радикалы поступают затем в реакционную зону, причем углерод окисляется и ионизируется. Для бензола, например, эти процессы можно представить следующим образом  [c.130]

    При анализе смесей соединений с очень разнообразными функциями селективное выделение или превращение определенных веществ приводит лишь к неполному решению задачи анализа, так как с помощью данной реакции выделяют лишь немногие компоненты такой смеси. В таких случаях имеет преимущество очень простой метод, разработанный Уолшем и Мерритом (1960), а также Дюбуа и Монкменом (1961) и усовершенствованный в аппаратурном отношении Касу и Кавалотти (1962),— метод качественного группового анализа после газохроматографического разделения. Принадлежность отдельных компонентов на хроматограмме к данной группе веществ в этом методе устанавливается при помощи цветных реакци выходящих из колонки соединений со специфическими реактивами. Необходимая для этого аппаратура отличается от обычно применяемых приборов только тем, что после детектора присоединяется простое устройство для распределения компонентов по различным реакционным сосудам. Вещества, выходящие из детектора, проходят сначала через присоединенный при помощи короткой [c.250]

    На рис. 8.16 приведены результаты исследования двух образцов сополимеров пиперилена с метилметакрилатом. Композиционную неоднородность оценивали по соотношению соответствующих высот на двух хроматограммах, записанных ИК-детектором Миран-1А по поглощению групп С—Н (Х=3,43 мкм) и 0=0 (к=5,75 мкм). Первая Хроматограмма отражала общее ММР сополимера, а вторая — распределение метилметакрилата в пределах этого ММР. Хроматограммы снимали на составной колонке размером 2(300X7,8 мм) с ц-сферогелем (10 А+10 А) при 40 °С и скорости потока тетрагидрофурана 1 мл/мин. Данные рис. 8.16 наглядно показывают изменение дифференциальных кривых ММР, состава и композиционной неоднородности на начальной и конечной стадиях реакции, которые обусловлены различной реакционной способностью сомономеров. [c.159]

    Анализ проводят в приборе (рис. 1), состоящем из реакционного сосуда 1, содержащего 25 мл 1%-ного раствора Ка[ВН1], закрывающегося тефлоновой пробкой 2 с проходящей через нее трубкой 3 для ввода газа-носителя (Не) и отводной трубкой 4. Выделяющиеся газы током Не (200 мл/мин) выносятся через отводную трубку 4 в осушительную трубку 5, заполненную безводным Са804, и поступают в детектор 6, в котором под действием электрического разряда (800—900 в, 15 втп/см) стибин распадается на На и 8Ь излучение атомов ЗЬ выделяется из спектра монохроматором, и соответствующий ему фототок регистрируется показывающим или регистрирующим прибором. Перед анализом через прибор пропускают Не для удаления азота, линия эмиссии которого (244,80 нм) несколько накладывается на аналитическую линию 8Ь (252,8 нм). [c.18]

    Пористые полимерные сорбенты были использованы также для изучения газового обмена в системе почва—атмосфера [75, 76], для анализа газообразных пестицидов [77, 78], для определения окиси этилена в пищевых продуктах [79, 80], для идентификации микро количеств продуктов пиролиза ониевых соединений [81], таких, как хлорид тетраметиламмония, бромид Ы-этилпиридина, иодид 1,1,4,4-тетраметилпиперазидина, для разделения газов, выделяемых микроорганизмами [82], и некоторых реакционных газов [83], для определения продуктов оксихлорирования бутана [84], для контроля за атмосферой городов и промышленных предприятий [85—87], для газохроматографического исследования респираторных и анестезирующих газов [88—90]. Использование порапака Р в сочетании с пламенно-ионизационным детектором позволило определять концентрации халотана вплоть до 0,01 ррм. [c.117]

    Для анализа веществ, прямое хроматографическое определение которых невозможно, нашел применение метод реакционной газовой хроматографии (РГХ). Он основан на предварительном превра-щении в результате химических реакций,этих веществ в форму, удобную для хроматографического анализа. Реакционно-химическая модификация компонентов проб сложного состава - один из наиболее эффективных путей повышения селективности хроматографического анализа [16, 17, 18, 19]. Возможными его направлениями являются защита термически нестабильных или реакционноспособных функциональных групп в анализируемых соединениях, а также перевод соединений в элементорганические производные, детектирование которых может бьггь осуществлено селективным детектором [20]. [c.64]

    Описаны методы определения SO2 и SO3 в отходящих газах кислородно-факельной плавки методом реакционной газовой хроматографии [160], а также определение по теплопроводности серусодержащих газов в продуктах восстановления руд [303], SOj, OS, СО2, О2 и N2 в газовой атмосфере печи для плавки медного штейна 561. Проведено газо-хроматографическое определение серусодержащих соединений в сигаретном дыму (H2S, OS, S2 и производных тиофена) с применением пламенно-фотометрического детектора [847], и определение SOj, СО, СО2, N2O в воздухе с применением плазменно-ионизационного детектора [703], а также определение SO2 в дымовых газах с помощью ядёрных методов [809]. [c.177]


Смотреть страницы где упоминается термин Детекторы реакционные: [c.258]    [c.203]    [c.41]    [c.121]    [c.193]    [c.500]    [c.127]    [c.192]    [c.195]    [c.353]    [c.354]    [c.446]    [c.464]    [c.284]    [c.302]    [c.19]    [c.96]    [c.48]   
Инструментальные методы химического анализа (1989) -- [ c.444 ]




ПОИСК







© 2024 chem21.info Реклама на сайте