Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабилизаторы электрического ток

    В параметрических стабилизаторах электрического тока используют свойства резонансных L -цепей поддерживать неизменность тока в цепи непостоянной нагрузки (рис. 2.2, б). Параметрические стабилизаторы имеют хорошие энергетические характеристики, особенно os ip кроме того, схемы с ПСТ сравнительно просты и надежны. Недостатки — неудобство в регулировании выходного тока, зависимость тока от входного напряжения, технические проблемы при переходе на большие мощности. Кроме того, режим холостого хода является для ПСТ аварийным и требует дополнительных технических мер для своего устранения. [c.46]


    Фотоколориметры представляют собой оптические приборы, состоящие из источников света, наборов светофильтров, комплекта кювет, приемника излучения, стабилизаторов электрического тока. В качестве источников света используют обычные лампы накаливания. В качестве светофильтров служат окрашенные стекла, пропускающие свет определенного диапазона длин волн, а приемник излучения (фотоэлемент) служит для преобразования световой энергии в электрическую. [c.74]

    Прибор ФЭК-М (рис. 17) состоит из стабилизатора электрического тока (рис. 17, а) и собственно фотоэлектроколориметра (рис. 17, б). Фотоэлектроколориметр вмонтирован [c.168]

    Стабилизатор служит для поддержания постоянства выходной величины при изменении в заданных пределах входной величины. Например, стабилизатор электрического тока, в котором при постоянстве Их и изменении Z поддерживается постоянной величина выходного тока /г, стабилизатор напряжения, в котором при изменении входного напряжения III поддерживается постоянное значение выходного напряжения [c.421]

    Считается, что эффективность стабилизирующего действия моюще-диспергирующих присадок тем выше, чем больше степень диссоциации их растворов в масле, т. е. чем выше электропроводность масла. Полагают, что металлсодержащие присадки действуют как стабилизаторы с образованием двойного электрического слоя, в то время как беззольные добавки стабилизируют загрязнения по механизму трехмерной мембраны. [c.217]

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]


    Ограничение напряжения и тока в электрических цепях обеспечивается применением в электронном блоке стабилизаторов тока, барьеров искрозащиты, наличием гальванического разделения силовых и искробезопасных цепей. [c.63]

    Гальваническая развязка осуществляется по цепям питания - сетевым трансформатором, удовлетворяющим требованиям ГОСТ 22782.5-78. Ограничение напряжения и тока цепей питания преобразователя осуществляется применением полупроводниковых стабилизаторов тока. По цепям сигнализации - барьером искрозащиты, состоящим из резистора и стабилитрона. Перечисленные элементы залиты компаундом. Печатный монтаж электрических цепей влагомера, конструкция, электрический монтаж выполнены в соответствии с требованиями ГОСТ 22782.5-78. [c.63]

    Стабилизатор глин, увеличивающий электрическую проводимость промывочных жидкостей, пенообразующий агент [c.21]

    Электрическая схема прибора позволяет получить несколько связанных гальванически стабилизированных напряжений постоянного тока для питания фотоэлементов, усилителя, схемы установки нуля и усилителя постоянного тока стабилизатора. [c.29]

    К числу поверхностно-активных стабилизаторов эмульсии относятся мыла — соли жирных кислот, содержащие 12—18 углеродных атомов в молекуле (олеиновой, пальмитиновой и др.). Щелочные мыла (соли одновалентных металлов), растворимые в воде, стабилизируют эмульсии (м/в), соли двух- и трехвалентных металлов являются стабилизаторами обратных эмульсий (в/м). Молекулы щелочного мыла лучше взаимодействуют с водой и, адсорбируясь на капельках масла, создают на их наружной поверхности достаточно толстый адсорбционно-сольватный слой, препятствующий соприкосновению и слиянию капелек масла. Кроме того, за счет диссоциации полярных групп стабилизатора возникает двойной электрический слой, также являющийся фактором стабилизации (рис. 73). [c.130]

    Устойчивость дисперсных систем объясняется тем, что на поверхности частиц образуется заряд (причем одинакового знака у всех частиц), препятствующий их слипанию. Для создания заряда дисперсные системы образуются в присутствии стабилизатора. В частности, для получения золя в систему добавляют электролиты, с помощью которых на границе раздела дисперсная частица - раствор образуется двойной электрический слой (ДЭС). [c.33]

    Получают эмульсии перемешиванием смеси разнополярных жидкостей (масла и воды) в присутствии стабилизатора эмульсии -эмульгатора. В качестве последних могут служить поверхностноактивные вещества (ПАВ), высокомолекулярные соединения ВМС), порошки. Стабилизирующее действие эмульгаторов объясняется образованием двойного электрического слоя при адсорбции на поверхности капелек фазы ионов образованием структурированных гелеобразных слоев эмульгатора микроброуновским движением углеводородных цепей, приводящем к взаимному отталкиванию капелек в эмульсиях типа в/м] образованием брони из крупинок щелочноземельных мыл или порошкообразного эмульгатора. [c.63]

    Как указывалось, на устойчивость коллоидной системы оказывает большое влияние стабилизатор — вещество ионного или молекулярного строения, адсорбирующееся на ядрах частиц. При ионном стабилизаторе вокруг ядер мицелл возникают двойные электрические слои, затрудняющие их объединение электрический фактор). [c.83]

    Коагулирование при нагревании можно объяснить возрастанием броуновского движения, приводящего к процессу десорбции стабилизатора с коллоидной частицы. А нарушение двойного электрического слоя способствует снижению энергетического барьера между частицами, что приводит к их слипанию. [c.89]

    Пептизация промыванием осадка сводится к удалению из него электролита, вызвавшего коагуляцию. В результате этого оставшийся двойной электрический слой утолщается, силы отталкивания начинают преобладать над силами притяжения и отделившиеся друг от друга мицеллы в результате броуновского движения равномерно распределяются в дисперсионной среде, т. е. образуют коллоидный раствор. Этот вид пептизации, как можно видеть, не требует введения в систему специального пептизатора, так как стабилизатор присутствует в осадке и промывание лишь обеспечивает увеличение его активности.,  [c.254]

    В последние годы довольно широкое распространение получило мнение, что основную роль в агрегативной устойчивости обычных латексов играет структурно-механический фактор. Однако эту точку зрения применительно к латексам, стабилизованным мылами, нельзя считать правильной. Было показано, что поверхность глобул стабилизованных латексов обычно покрыта слоем эмульгатора лишь на 30—40%. При значительной ненасыщенности адсорбционного слоя на поверхности глобул говорить о наличии вокруг частиц двухмерных студней и о их структурно-механических свойствах едва ли возможно. Устойчивость латексов, стабилизованных мылами, определяется, в основном, действием отталкивающих сил между двойными электрическими слоями, возникающих при перекрытии ионных атмосфер. При этом собственно стабилизующей частью молекулы стабилизатора является ее гидратированные ионизированные группы, а роль углеводородного радикала сводится к фиксации молекулы стабилизатора на межфазной поверхности полимер — вода. [c.384]


    Больщинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды содержат еще 3-й компонент, являющийся стабилизатором дисперсности. Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем электрический и молекулярно-адсорбционный. [c.308]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Пылеулавливание в пенном газоочистителе с противоточной решеткой н стабилизатором пены (высота стабилизатора 60 мм размеры ячейки — 37,5 X 37,5 мм) изучено [128, 130, 331] на плохо смачиваемой, трудно улавливаемой слюдяной пыли, а также на стандартной кварцевой пыли. Слюдяная пыль, выделяющаяся в процессе обработки слюды, отличается полидисперсностью и включает частицы размерами от сотых долей микрона до сотен микрон. Для испытания ПГПС-ЛТИ-И служила слюдяная пыль со средним медианным размером 8 мкм. Помимо плюхой смачиваемости и полидисперсности к отличите.льным свойствам слюдяной ныли относится разно-именность электрических зарядов частиц в потоке воздуха. [c.240]

    Наиболее широкое распространение в аналитической практике получили пламенные фотометры с интерференционными светофильтрами. Принципиальная оптическая схема такого фотометра представлена на рис. 1.14. Анализируемый раствор распыляется сжатым воздухом в распылителе 2 и подается в пламя 5 в виде аэрозоля. Крупные капли аэрозоля конденсируются на стенках распылителя и удаляются через слив 3. Устойчивый и мелкодисперсный аэрозоль увлекается в пламя, предварительно смешиваясь с горючим газом. Суммарное излучение пламени, прямое и отраженное рефлектором 4 через диафрагму 6 и конденсаторы 7, 8 попадает на интерференционный светофильтр 9, а выделенное им излучение собирается конденсором 10 в сходящийся пучок и, пройдя защитное стекло И, попадает на катод фотоэлемента или фотоумножителя 12. Электрический сигнал после усилителя 13 отклоняет стрелку микроамперметра 14. В блоке питания 15 находятся автокомпенсацион-ные стабилизаторы и преобразователь напряжения. [c.39]

    Эквивалентная электрическая емкость первичного преобразователя уменьшена за счет применения узлов VI, V2, состоящих из диодов, стабилитронов, резисторов и дублированных стабилизаторов напряжения типа КР 142 ЕН5Б. Перечисленные элементы также залиты компаундом. Разъем Х6 искробезопасных цепей невзаимозаменяемой модификации. К выходу самописец могут подключаться только приборы, имеющие искробезопасное исполнение. [c.63]

    Системы состоят из ряда датчиков, преобразующих информацию о расходе воздуха, давлении, температуре, положении дроссельной заслонки и некоторых других данных о состоянии двигателя в электрический сигнал. Все сигналы с датчиков поступают в блок синтеза информации (БСИ), где они преобразуются в командный импульс определенной длительности. Управление впрыскиванием топлива осуществляется, как и в большинстве систем с электронным управлением, путем изменения длительности электрического импульса, посылаемого Б электромагниты форсунок. Система работает от электросети автомобиля и, как правило, содержит блок электроснабжения со стабилизаторами и защитой от резких изменений напряжения, которые могут вызвать необратимые повреждения электронных устройств. [c.91]

    Эффективность стабилизаторов и оптимальная концентрация их определялись по изменению средневесового значения молекулярного веса, периоду индукции окисления, а также по изменению физико-механических, электрических свойств и индекса расплава в процессе получения покрытий и их атмосферного старения, так как только исследование влияния на комплекс свойств полиэтилена позволяет прийти к выводу об эффективности тех или иных стабилизаторов. В качестве стабилизаторов использовались только порошкообразные вещества. При этом обращалось внимание на температуру плавления, так как нри температуре получения покрытия +230—(+250) °С стабилизатор должен полностью проплавиться (табл. 5.7). [c.129]

    Анализатор предназначен для автоматического определения температуры вспышки нефтепродуктов на технологическом потоке для обеспечения оперативного контроля качества нефтепродуктов при их переработке. Анализатор состоит из датчика АВЦ-80 B2TVB блока подготовки пробы, электронного потенциометра КСП-З, стабилизатора напряжения ио. 29),. Принцип действия анализатора основан на непрерывном автоматическом регулировании и измерении наименьшей температуры подо-, грева испытуемого нефтепродукта,на уровне которой происходит вспышка паровоздушной смеси от электрической искры над поверхностью продукта. [c.51]

    Электрическая схема (рис. 11). Преобразование световых потоков, получаемых при эмиссии элементов в пламени в электрические сигналы, осуществляется цвухкаскадным усилителем постоянного тока 16, выполненным по балансной схеме. Электрическая схема прибора предусматривает ступенчатую и плавную регулировку чувствительности. Питание схемы осуществляется от сети переменного тока напряжением 220 В через феррорезонансный стабилизатор 17. Количественное определение элемента сводится к установлению линейной зависимости между показателями прибора (в мкА) и концентрацией вещества в растворе (в мкг/мл) при определенном режиме работы прибора и нахождению неизвестной концентрации графическим или расчетными методами. [c.25]

    Стабилизатор напряжения постоянного тока У1136. Прибор питается от сети 220 В. На передней панели прибора размещены сигнальная лампа, тумблер включения прибора сеть , тумблер включения высокого напряжения анод , вольтметр, переключатель пределы регулирования , ручки регулировки выходного напряжения грубо , средне и тонко . Выходные гнезда прибора с указанием полярности и земля расположены на задней стенке прибора. Электрическую цепь кулонометрической установки подсоединяют к выходным гнездам с соблюдением полярности. [c.151]

    Консфуктивно хроматограф ЛХМ-72 выполнен в виде единого устройства, состоящего из четырех отдельных, но соединенных между собой с помощью кабелей и газопроводов блоков (рис. 24.2) блока регулирования температуры 10, блока измерения напряжения 4, блока подготовки газов / и блока термостатов 21. Блок термостатов включает в себя термостаты колонок, ДТП, испаритель, газовый дозатор, регулятор температуры испарителя и нафевателей, предназначенных для подогрева ввода ДИП. Блок подготовки газов обеспечивает регулирование, очистку и стабилизацию потока газа-носителя. В блоке измерения напряжения размещены электрические цепи регулировки моста ДТП и усилителя ДИП, стабилизатор напряжения для их пита- [c.297]

    Силами отталкивания могут являться электрические силы, возникающие в результате избирательней адсорбции межфазной поверхностью одного из ионов электролита, пргГсутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорб ции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегативную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX. [c.20]

    Изложенному представлению о существе электрофореза, казалось бы, противрречат сделанные ранее наблюдения об односторонности этого явления, т. е. наблюдения, показавшие, что при электрофорезе переносится только коллоидное вещество, но не происходит переноса ионов. Однако противоречие здесь только кажущееся, так как для образования на частицах двойного электрического слоя требуется ничтожно малое количество электролита, которое очень трудно определить количественно. Так, было найдено, что при получении золя сульфида мышьяка, для которого стабилизатором являются молекулы сероводорода, на 0,67 г АбгЗз, выделившегося на аноде, приходилось всего 10- г водорода, выделяющегося на катоде. Понятно, что такое количество водорода с помощью обычных. аналитических методов определить [c.173]

    Второй случай, когда в систему вводится электролит, не содержащий обоих ионов с электролитом — стабилизатором, отличается от первого только тем, что здесь имеет место явление обмена противоионов коллоидной частицы на эквивалентное число одинаковых по знаку ионов введенного электролита. Наиболее простой обмен ионов происходит, когда на поверхности твердой фазы имеется двойной электрической слой типа Гуи —Чэпмена, т. е. когда можно пренебречь специфическим адсорбционным потенциалом ионов. Очевидно, при этом обмен будет определяться только валентностыо J iщoв. Например, если отрицательно заряженная дисперсная аза находится в растворе, содержащем два [c.191]

    С помощью буквенного коэффициента п в этой формуле Дюкло хотел подчеркнуть возможность широкого изменения содержания H2S в коллоидной частице. Для подобной сложной частицы Дюкло первый предложил название мицелла . Небольшое же количество стабилизатора в мицелле он назвал активной частью и указал, что йменнр эта часть обусловливает движение Частицы в электрическом" поле и ее присутствием объясняется поведение золя при введении в него электролитов. [c.241]

    Следует, однако, заметить, что химические и приведенные выше адсорбционные представления приложимы далеко не всегда. Например, при получении водных эмульсий углеводородов с применением в качестве стабилизатора обычных мыл также образуется двойной электрический слой на поверхности капелек. При этом потенциалопределяющими ионами служат анионы жирной кислоты со сравнительно длинным углеводородным радикалом, а про-тивоион ами — катионы щелочного металла. Понятно, что никакого комплексообразования или достройки кристаллической решетки в этом случае не может быть, так как капельки углеводорода химически инертны и аморфны. Однако существенно то, что в этом случае капельки углеводорода адсорбируют ионы, в состав которых входят углеводородные радикалы. [c.242]

    При пользовании схемами строения мицелл и их формулами следует помнить, что мицелла лиозоля не является чем-то раз и навсегда сформированным, а может претерпевать самые различные изменения. Так, при введении индифферентного электролита в золь происходит сжатие диффузной части двойного электрического слоя, а следовательно, радиус мицеллы уменьшается. При этом противоионы, находящиеся в диффузном слое, проникают за плоскость скольжения и в результате п — х) возрастает, а х уменьшается. При достаточном йоличёстве индифферентного электролита ионы диффузного слоя могут полностью перейти в адсорбционный слой и частица окажется лишенной заряда. При этом, например, мицелла золя Agi, для которой стабилизатором является KI, будет иметь вид [c.244]

    Если же при смешении одно из исходных веществ взято в избытке, образуется золь. П. П. Веймарн, указавший на особую положительную роль избытка одного из веществ, принимающих участие в образовании коллоидной системы, полагал, что этот избыток необходим для понижения растворимости дисперсной фазы. Однако гораздо более правильно об-ьяснить получение устойчивого золя Agi в присутствий избытка AgNOa или KI тем, что эти электролиты являются стабилизаторами частиц иодида серебра, образуя на них двойной электрический слой. [c.246]

    Закономерности коагуляции золей Agi, содержащих иеионогенные поверхностно-активные вещества, свидетельствуют о том, что высокая. стабильность систем в этом случае в основном обусловлена силами неэлектростатической природы, хотя и в присутствии неионогенного стабилизатора коллоидные частицы имеют электрический заряд. [c.299]

    Согласно общепринятой мицеллярной теории строения коллоидных растворов, золь состоит из двух частей мицелл и интерми-целлярной жидкости. Мицелла — это структурная коллоидная единица, т. е. частица дисперсной фазы, окруженная двойным электрическим слоем. Интермицеллярной (т, е, межмицеллярной) жидкостью называют дисперсионную среду, разделяющую мицеллы, в которой растворены электролиты, неэлектролиты и ПАВ, являющиеся стабилизаторами коллоидной системы. Частицы дисперсной фазы лиофобных золей имеют сложную структуру, которая зависит от условий получения золей. [c.396]

    Конденсация паров. Это также метод получения золей физической конденсацией. При пропускании паров какого-либо простого вещества в жидкость в результате конденсации могут образоваться стойкие золи. Сюда относятся электрические методы получения дисперсий металлов, распыляемых под водой или в органической жидкости в вольтовой дуге (метод Бредига) и в искровом высокочастотном разряде (метод Сведберга). Стабилизаторами для образующихся при конденсации паров дисперсий служат оксиды этих же металлов, являющиеся побочными продуктами процесса распыления. Оксиды адсорбируются на частицах металла и создают защитный слой. [c.413]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]


Смотреть страницы где упоминается термин Стабилизаторы электрического ток: [c.92]    [c.76]    [c.92]    [c.9]    [c.46]    [c.212]    [c.253]    [c.41]    [c.347]   
Техника лабораторных работ (1982) -- [ c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Стабилизаторы



© 2025 chem21.info Реклама на сайте