Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простые эфиры целлюлозы окисление

    Окислительная деструкция Ц. нежелательна при отбелке и облагораживании Ц. (см. ниже), в то же время на окислении Ц. основана одна из важных стадий производства вискозного волокна и простых эфиров целлюлозы — предсозревание щелочной Ц. (см. Вискоза). [c.428]

    Синтез целлюлозных ионитов может быть проведен несколькими путями 1) избирательным окислением спиртовых групп целлюлозы в карбоксильные 2) образованием сложных эфиров целлюлозы с полифункциональными кислотами 3) получением простых эфиров целлюлозы с соединениями, содержащими дополнительно группы с кислыми или основными свойствами 4) образованием привитых сополимеров целлюлозы с мономерами, содержащими кислотные или основные группировки. [c.207]


    В результате термо- и фотоокислительных процессов сложные и простые эфиры целлюлозы желтеют и изменяют свои механические свойства. Добавка антиоксидантов и УФ-абсорберов может заметно улучшить стабильность этих продуктов. Большое влияние на процесс старения сложных эфиров целлюлозы оказывает тип пластифицирующей добавки. Окисление пластификатора может ускорять разложение самих эфиров целлюлозы, так что в первую очередь следует защищать пластификаторы. Особенно легко окисляются пластификаторы, содержащие метиленовые группы [132], поэтому соединения с длинными алифатическими цепями меньше способствуют сохранению механических свойств производных целлюлозы, чем пластификаторы ароматического строения [591]. [c.400]

    Все эти тенденции, естественно, необходимо было учесть при подготовке данной книги. По сравнению с изданной в 1953 г. книгой 3. А. Роговина и Н. Н. Шорыгиной Химия целлюлозы и ее спутников в этой монографии сокращены разделы, посвященные вопросам взаимодействия целлюлозы с основаниями, гидролизу и окислению целлюлозы, и в известной степени разделы по синтезу и исследованию свойств сложных и простых эфиров целлюлозы. Одновременно введены новые разделы, отражающие современные направления развития химии целлюлозы. Это — новые методы превращений, обеспечивающие введение в макромолекулу целлюлозы разнообразных функциональных групп и, особенно, синтез и исследование свойств привитых сополимеров целлюлозы с различными синтетическими полимерами. Во избежание чрезмерного увеличения объема монографии исключен ряд разделов, относящихся к выделению целлюлозы из растительных материалов, а также все разделы, посвященные спутникам целлюлозы — лигнину и полиозам, которые требуют освещения в специальных монографиях. [c.10]

    В последние годы Козьминой и сотр. систематически исследован процесс окисления кислородом воздуха при повышенной температуре сложных и простых эфиров целлюлозы (процесс термоокислительной деструкции). Согласно полученным ими [c.243]

    Скорость окисления простых эфиров целлюлозы зависит от характера алкильного радикала и увеличивается в ряду  [c.243]

    Так как окислительный распад простых эфиров целлюлозы протекает по радикальному механизму, то он может значительно замедляться добавлением различных ингибиторов. Одним из эффективных ингибиторов этой реакции являются соли и гидроокиси некоторых металлов переменной валентности. Согласно данным Козьминой и сотр., добавление солей меди, свинца и олова значительно уменьшает скорость окисления простых эфиров целлюлозы кислородом воздуха, а добавление солей кобальта и марганца ускоряет этот процесс. Различное действие солей металлов, по мнению указанных исследователей, объясняется разными окислительно-восстановительными потенциалами этих металлов. [c.244]


    Значительное замедление процесса окисления простых эфиров целлюлозы имеет место и при добавлении некоторых комплексных соединений, например, комплексов продуктов конденсации салицилового альдегида с гексаметилендиамином или с -фенилендиами-ном с ионами поливалентных металлов Комплексы (хелаты) с Си + и Fe + тормозят окисление простых эфиров целлюлозы, а хелаты с Zn2+ или А - - не оказывают влияния на этот процесс. [c.244]

    Классификация химических реакций целлюлозы как полимера рассмотрена выше в разделе, посвященном особенностям химических реакций полисахаридов древесины (см. П.3.1). У технической целлюлозы, выделенной из древесины, наибольшее значение из полимераналогичных превращений на практике имеют реакции функциональных групп. К этим реакциям относятся реакции получения сложных и простых эфиров, получения щелочной целлюлозы, а также окисление с превращением спиртовых групп в карбонильные и карбоксильные. Из макромолекулярных реакций наиболее важны реакции деструкции. Реакции сшивания цепей с получением разветвленных привитых сополимеров или сшитых полимеров пока имеют ограниченное применение, главным образом, для улучшения свойств хлопчатобумажных тканей. Реакции концевых групп используются в анализе технических целлюлоз для характеристики их степени деструкции по редуцирующей способности (см. 16.5), а также для предотвращения реакций деполимеризации в щелочной среде. Как и у всех полимеров, у целлюлозы одновременно могут протекать реакции нескольких типов. Так, реакции функциональных групп, как правило, сопровождаются побочными реакциями деструкции. [c.544]

    Целлюлоза, как многоатомный спирт, может давать сложные эфиры неорганических и органических кислот, простые эфиры, алкоголяты, продукты окисления (кислоты), галогениды, аминопроизводные, комплексные соединения и т. д. (схема 17.1). Большинство реакций целлюлозы начинается в гетерогенной среде. [c.377]

    Из гидроксилсодержащих полимеров (типа поливинилового спирта, целлюлозы и т. д.) можно легко получить различные их производные (простые и сложные эфиры, карбаматы, продукты окисления). Для введения в гидроксилсодержащие полимеры остатков различных нуклеофильных агентов целесообразно вначале переводить их в соответствующие тозилаты. Подобный прием продемонстрирован на примере [c.18]

    Преимуществом этого способа является возможность получения привитых сополимеров не только самой целлюлозы, но и ее простых и сложных эфиров (образование гидроперекисных групп происходит не только при окислении ОН-групп, но и при взаимодействии окислителя с ацилокси- и особенно алкоксигруппами этих эфиров ), а также возможность регулирования числа вводимых [c.61]

    Вопросам воздействия высоких темпершур на эфиры целлюлозы н пластические массы на их основе посвящены также ряд других работ (9) - (22) О.П Козьмина указывает, что простые эфиры целлюлозы менее стабильны, чем сложные. Сравни ел ьпая легкость окисления простых эфиров целлюлозы связаны с образованием в них перекисных группировок При окислении свежеполучеиных простых эфиров целлюлозы наблюдаются периоды индукции. После хранен ия в обычных условиях этот период индукции уменьшается. [c.66]

    Г. С. Петров, Б. Н. Рутовский и И. П. Лосев классифицируют пластмассы по методам их получения и по сырью. Согласно их классификации различают пластмассы на основе 1) продуктов поликонденсации 2) продуктов полимеризации 3) сложных и простых эфиров целлюлозы 4) белковых веществ 5) естественных и искусственных битумов 6) продуктов окисления глицеридов ненасыщенных жирных кислот. Классификация Петрова, РутоБского и Лосева в значительной степени отражает естественно сложившееся в технике и в литературе разделение пластмасс. [c.15]

    Монокарбоксилцеллюлоза более гигроскопична, чем исходная целлюлоза, что объясняется введением новых функциональных групп и разрыхлением структуры целлюлозы при окислении Предварительное разрыхление структуры целлюлозы путем получения низкозамешенных простых эфиров целлюлозы — аминоэтил-, карбоксиметил-, цианэтил-, оксиэтил-, метилцеллюлозы (см. гл. 7) приводит к увеличению скорости растворения продуктов окисления этих эфиров двуокисью азота в разбавленных растворах NaOH по сравнению с препаратом монокарбоксилцеллюлозы с таким же содержанием СООН-групп. [c.212]

    Большинство процессов химической переработки целлюлозы основывается на реакциях гидроксильных групп целлюлозных макромолекул. Получающиеся производные целлюлозы могут быть разделены на три основных класса молекулярные соединения, продукты замещения и продукты окисления. Молекулярные соединения являются нестабильными продуктами, образованными за счет водородных связей между гидроксилами целлюлозы и некоторыми сильно полярными реагентами. Продукты замещения образуются путем химической реакции между гидроксилами целлюлозы и реагентами, которые связываются с кислородом гидроксила ковалентной связью. К ним относятся сложные и простые эфиры целлюлозы. Эти продукты имеют наибольшее техническое значение. Продукты окисления целлюлозы обычно деструктированы. Они долгое время не имели широкого практического применения. В настоящее время в промышленных масштабах уже производится целлюлоза, окисленная двуокисью азота. Этот продукт применяется в медицине, в первую очередь, как хорошее кровоостанавливающее средство, а также в текстильной и других отраслях промышлен- ности. Окисленные целлюлозы, кроме того, представляют интерес как волокнистые ионообменники. Ведутся интенсивные исследования с целью введения в целлюлозные макромолекулы новых реакционноспособных функциональных групп, использования их для химических превращений, описанных в классической органической химии, синтеза привитых сополимеров целлюлозы и так называемых сендвич-полимеров целлюлозы с другими полимерными веществами. Исследования в области модификации целлюлозы в ближайшие годы безусловно приведут к широкому использованию препаратов модифицированной целлюлозы в различных отраслях народного хозяйства. [c.322]


    Полиалкилирован-ные соединения Простые эфиры целлюлозы Метилцеллюлоза растворима в холодной воде, выпадает в осадок при нагревании Этилцеллюлоза нерастворима в воде, растворима в органических растворителях Вензилцеллюлоза при нагревании с уксусным ангидридом и серной кислотой образуется бензилацетат, который определяется окислением до бензойной кислоты [c.146]

    Механизм действия перечисленных здесь соединений как антиоксидантов может быть различным в зависимости от имеющихся функциональных групп. Соединения с меркапто- или фенольными группами действуют преимущественно обрывая радикальные цепи. Для соединений с атомами серы, образующими простую эфирную связь, преобладающим является разрушение перекисей, причем в некоторых случаях, например для дисульфидов и сульфенамидов, И1 1еет место диссоциация с образованием сульфидного аниона, в других же — окисление сульфидного мостика гидроперекисями с образованием структур, содержащих окисленную серу. Гетероциклические серусодержащие соединения действуют также как УФ-абсорберы. Поэтому многие соединения такого типа могут быть использованы для повышения светостойкости различных пластмасс, однако преимущественное применение они находят для стабилизации эфиров целлюлозы. [c.304]

    Химические превращения целлюлозы необходимо рассматривать в тесной взаимосвязи с особенностями химического поведения как низкомолекулярных гидроксилсодержащих соединений (спиртов, моносахаридов), так и всех соединений того класса, к которому относится целлюлоза, — класса полисахаридов. При этом в основу классификации химических превращений целлюлозы могут быть положены либо особенности химического строения образующихся производных (простые и сложные эфиры, продукты окисления, смешанные полисахариды, содержащие элементарные звенья различного строения, блок- и привитые сополимеры), либо механизм протекающих реакций (нуклеофильное или электрофильное замещение или присйединение, радикальная или ионная сополимеризация и др.). [c.15]

    По тому, как полимеры ведут себя при воздействии тепла, их условно делят на две группы 1) практически не карбонизующиеся такие полимеры претерпевают деструкцию с разрывом основной цепи макромолекулы и образовапием значительного количества низкомолекулярных соединений (напр., полистирол, полиметил-метакрилат, полиметиленоксид, полиэтилен) 2) карбонизующиеся такие полимеры проявляют склонность к реакциям заместителей без существенного разрыва основной цепи (напр., полиакрилонитрил, простые и сложные поливиниловые эфиры, поливиниловый спирт, целлюлоза, полимеры сетчатого строения). Способность полимеров к К. оценивают по т. наз. коксовым числам и содержанию углерода в коксе. Коксовые числа у полимеров 1 группы не превышают 1, а у полимеров 2 группы могут достигать 60—70. Способность полимеров к К. может быть повышена их соответствующей предварительной обработкой, напр, радиационным облучением, окислением или хлорированием. [c.475]

    Химические свойства целлюлозы определяются прежде всего присутствием гидроксильных групп. Действуя металлическим натрием, можно получить тринатрийалкоголят целлюлозы [СбН702(0Ыа)з] . Под действием концентрированных водных растворов щелочей происходит так называемая мерсеризация — частичное образование алкоголятов клетчатки, приводящее к набуханию волокна и повышению его восприимчивости к красителям. В результате окисления в макромолекуле целлюлозы появляется некоторое число карбонильных и карбоксильных групп. Под влиянием сильных окислителей происходит распад макромолекулы. Гидроксильные группы целлюлозы способны алкилироваться и ацилироваться, давая простые и сложные эфиры. [c.388]

    Поливиниловый спирт обладает всеми свойствами, характерными для вторичных спиртов. Так, при окислении поливинилового спирта наряду с реакциями, приведенными на стр. 154, 160, наблюдается также образование кетонных групп, что характерно для вторичных спиртов. При действии на поливиниловый спирт металлического натрия в жидком аммиаке при температуре —40° образуется поливинилалкоголят натрия (по методу, предложенному П. П. Шорыгиным для синтеза алкоголята целлюлозы). При действии на поливинилалкоголят галоидными алкилами образуются простые поливиниловые эфиры. При взаимодействии с галоидалкиламинами получаются полимеры с аминогруппами в боковых цепях  [c.301]

    Реакции гидроксил I. ттых групп целлюлозы. Целлюлоза является полиатомным спиртом и содержит в каждом остатке глюкозы 3 спиртовых гидроксила. Благодаря этому она может давать ряд реакций, характерных для спиртов, а именно реакции замещения, приводящие к образованию простых и сложных эфиров, ацеталей, алко-голятов и т. п., и реакции окисления, приводящие к образованию альдегидных, кетонных и карбоксильных групп. Общей особенностью этих реакций целлюлозы является то обстоятельство, что в огромной молекуле целлюлозы, имеющей несколько тысяч гидроксильных групп, во всех этих реакциях обычно участвует лишь какая-то часть их. Йоэтому легче всего образуются продукты, соответствующие замещению одной или двух гидроксильных групп, и очень больших усилий требует замещение всех гидроксильных грунн. Нередко это вообще не удается. Причина этих трудностей заключается в том, что для получения полностью замещенного продукта необходимо обеспечить 100%-ный выход в данной реакции, что, как известно, возможно не всегда ввиду наличия побочных реакций, изменяющих природу реакционных групп. Иногда причина зах лючается в различной реакционной способности первичных и вторичных гидроксилов целлюлозы. Достаточно достоверным примером такого рода являются реакции тритилирования и тозилирования. Трифенилхлорметап и п-толуолсульфохлорид оказались веществами, способными реагировать лишь с первичными гидроксильными группами, оставляя свободными [c.443]


Смотреть страницы где упоминается термин Простые эфиры целлюлозы окисление: [c.378]    [c.243]    [c.200]    [c.478]   
Химия целлюлозы (1972) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Простые эфиры целлюлозы

Целлюлоза, окисление

Эфиры простые

Эфиры целлюлозы

Эфиры целлюлозы окисление



© 2025 chem21.info Реклама на сайте