Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие соединения азота с водородом

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Соединения с азотом. Литий образует два бинарных соединения с азотом и несколько соединений, содержащих помимо азота другие неметаллы, из которых здесь будут рассмотрены только соединения, содержащие водород. [c.22]

    Элементы подгруппы азота образуют соединения с преимущественно ковалентными связями. В соединениях с кислородом и другими электроотрицательными элементами они проявляют положительную валентность, в соединениях с водородом и металлами — отрицательную валентность. [c.128]

    На первый взгляд кажется, что щелочно-цианидный метод фиксации азота обладает значительными преимуществами, что делает понятным, что многие прежние сторонники процесса надеялись выгодно получать не только соединения циана, но и другие соединения азота, получаемые из цианидов. Прежде всего процесс кажется выгодным с точки зрения энергии. Как показывает уравнение (I), при образовании двух граммолекул цианистого натрия поглощается 138 500 кал. Однако при сжигании 3 граммолекул окиси углерода, полученных одновременно с цианистым натрием, выделяется 204 ООО кал. Кроме того, если конечными продуктами являются аммиак или цианистый водород, то в качестве сырых материалов расходуются лишь уголь, азот и вода в пропорциях, указанных уравнениями реакций. Нужная температура, около 1000°, кажется весьма умеренной по сравнению с температурами, необходимыми при дуговом или цианамидном методах. Наконец щелочно-цианидный метод не требует применения высокого давления, неизбежного при получении синтетического аммиака. Несмотря на [c.249]

    Немецкие химики, разработчики промышленного способа синтеза аммиака из водорода и азота Фриц Габер (1868—1934) и Карл Бош (1874—1940) оказали своему отечеству огромную услугу хорошо развитая в Германии химическая промышленность могла из аммиака получать азотную кислоту и другие соединения азота — от лекарств до взрывчатых веществ. Германия, блокированная войсками противников, без аммиачного производства не смогла бы столько времени продержаться в Первой мировой войне. Габер был истинным патриотом великой Германии, готовым ради нее забыть даже принципы гуманизма, которыми принято руководствоваться в мире науки. Ничем более нельзя объяснить его активные рекомендации применять в военных действиях боевые отравляющие вещества. Однако после прихода к власти нацистов Габер из-за своего неарийского происхождения подвергся гонениям и был вынужден оставить научную работу. Он умер на чужбине, а немецкие газеты не напечатали о его кончине ни одной строчки. [c.288]

    ДРУГИЕ СОЕДИНЕНИЯ АЗОТА С ВОДОРОДОМ [c.406]

    Другие соединения азота с водородом 401 [c.407]


    Если соединение содержит три или более различных элемента, то для составления формулы по валентности необходимо иметь дополнительные данные. Например, для установления формулы азотной кислоты, состоящей из Н, О и Ы, кроме валентности азота, равной пяти в этом соединении (валентности водорода и кислорода равны соответственно 1 и 2), такие данные требуются, так как без этого задача остается неопределенной и допускает различные решения. Зная же, что в молекуле азотной кислоты содержатся только один атом водорода и один атом азота, друг с другом непосредственно не связанные, можно получить вполне определенную формулу. [c.29]

    Наряду со сходством имеются и различия в молекулярной структуре масел, смол и асфальтенов. Масла состоят из высокомолекулярных углеводородов, а также в случае сернистых нефтей из сероорганических соединений, близких по строению к высокомолекулярным углеводородам. Смолы и асфальтены содержат не только углерод, водород, серу, но и кислород и азот, ванадий, никель и некоторые другие металлы. Азот концентрируется преимущественно в асфальтенах, а кислород — в смолах. Суммарное содержание гетероатомов в них достигает 10% (и более). [c.11]

    Помимо углеводородов, в нефти присутствует и некоторое количество других соединений, главным образом в виде смолистого остатка, представляющего собой смесь сложных высокомолекулярных углеводородных веществ, содержащих кроме углерода и водорода такие элементы, как кислород, сера, азот и некоторые металлы (ванадий, никель и др.). Эти вещества являются производными углеводородов, т. е. представляют собой углеводороды, в которых одна группа или ряд групп заменены атомами кислорода, серы и других элементов. [c.242]

    Температура является одним из основных факторов. С ее повышением жесткость (деструкция углеводородов и других соединений) процесса возрастает, приводя к снижению содержания серы, азота, кислорода и металлов в продуктах гидрогенизации. При этом по мере повышения температуры расход водорода для некоторых процессов (например, гидроочисткн) увеличивается, а затем может несколько снизиться в результате протекания реакции дегидрирования (при этом образуется водород). [c.216]

    Кальций, стронций и барий энергично взаимодействуют с активными неметаллами уже при обычных условиях. С менее активными (такими, как азот, водород, углерод, кремний и др.) щелочноземельные металлы реагируют при более или менее сильном нагревании. Реакции сопровождаются выделением большого количества тепла. Активность взаимодействия в ряду Са—Зг—Ва возрастает. При нагревании щелочноземельные металлы взаимодействуют с другими металлами, образуя сплавы, в состав которых входят различные интерметаллические соединения. [c.574]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Протоны, образующие связи с кислородом, азотом с серой, находятся в спиртах, фенолах, карбоновых кислотах, енолах, аминах, амидах, меркаптанах и других соединениях. В большинстве случаев такие протоны относятся к так называемым активным атомам водорода. Характер таких активных протонов зависит от силы межмолекулярных взаимодействий и скорости химического обмена. На положение сигналов таких протонов сильно влияет концентрация раствора, его температура и характер растворителя. Поэтому для определения истинных химических сдвигов активных протонов используют растворитель, не образующий водородных связей (например, четыреххлористый углерод), и производят измерения при нескольких концентрациях раствора, после чего экстраполяцией к бесконечному разбавлению раствора определяют величину химического сдвига. Полученное при этом значение 6 соответствует отдельным молекулам, не связанным межмолекулярными водородными связями. [c.133]

    Атомы кислорода и азота в состоянии хр -гибридизации должны были бы иметь валентные углы 90°, однако, как уже говорилось в разд. 1.3, в молекулах воды и аммиака, а также и в других соединениях кислорода и азота валентные углы намного больше и скорее ближе по величине к углам тетраэдра, т. е. к 109°28, а не к 90° (табл. 1.5). Эти факты привели к предположению, что в указанных соединениях кислород и азот образуют хр -связи, т. е. вместо перекрывания двух (или трех) р-орбиталей с 15-орбиталью водорода гибридизуются 25-и 2р-орбитали, давая четыре р -орбитали из них только две (или три) используются для связи с водородом, а остальные заняты неподеленной парой электронов. Такое описание [c.37]


    Очевидно, металлы как восстановители будут вступать в реакции с различными окислителями, среди которых могут быть простые вещества, кислоты, соли менее активных металлов и некоторые другие соединения. Соединения металлов с галогенами называются галидами, с серой — сульфидами, с азотом — нитридами, с фосфором— фосфидами, с углеродом—карбидами, с кремнием — силицидами, с бором — боридами, с водородом — гидридами и т. д. Многие из этих соединений нашли важное применение в новой [c.153]

    Составляющие молекулы (молекулы элементарных газов. — Ю. С.) какого-либо газа, — рассуждал далее Авогадро, — не состоят из одной элементарной молекулы (атома.— Ю. С.), но образо-паны из некоторого чпсла этих молекул, соединенных в одну молекулу силой притяжения и когда молекулы другого вещества присоединяются к данным молекулам для образования сложных молекул, тогда составная молекула , которая должна была б образоваться в результате этого соединения, делится на две или больше частей... Просматривая различные наиболее известные газообразные соединения, я пе нахожу других примеров, кроме примера удвоения объема Д. Дальтон, а за ним и Я. Берцелиус считали, что простые газы (кислород, азот, водород и т. д.) состоят из отдельных атомов (О, N, Н), а не молекул, и в связи с этим [c.150]

    Другие водородные соединения азота. Атомы водорода в молекуле аммиака могут частично или полностью замещаться атомами металлов с образованием амидов, имидов или нитридов. [c.346]

    Помимо фосфина при этой реакции получается некоторое количество дифос-фина PjH — жидкого при обычных условиях соединеиия фосфора с водородом. Если фосфин является аналогом аммиака, то PjH, является аналогом другого соединения азота с водородом — гидразина NjH (H2N—NHj). Так как PjHi — чрезвычайно активное вещество, сильный восстановитель, воспламеняющийся на воздухе, то образующийся при реакции газ вспыхивает, хотя сам фосфин при комнатной температуре с молекулярным кислородом ие взаимодействует. [c.181]

    Из других соединений азота с водородом следует отметить гидразин МгН4—бесцветную жидкость с температурой кипения 113,34 °С. Гндразин является хорошим восстановителем. При его горении в атмосфере воздуха или кислорода выделяется большое количество тепла. Гидразин и все его производные сильно ядовиты. [c.270]

    Различные модификации электролитического процесса заключаются главным образом в замене бифторида аммония другими соединениями азота. Так, описан электролиз раствора пиридина в безводном фтористом водороде. Шмейссер [335] получил патент на метод электролитического фторирования мочевины в безводном фтористом водороде, отличающийся высоким выходом трифторида азота. [c.197]

    Окисление жидкого аммиака не принадлежит к числу селективных реакций. Например, наряду с гидразином при окислении жидкого аммиака, в котором растворен бромид натрия, на платиновом аноде при —40° С образуются и другие соединения азота с водородом (N2H2, N3H3, N4H4), которые, возможно, являются продуктами окисления гидразина. [c.147]

    Перейдем теперь к другим соединениям азота с водородом и к соединениям его с кислородом. Но для того, чтобы наглядно охватить отношение между аммиаком и другими соединениями азота, полезно сперва указать общий закон замещений, прилагающийся ко всем случаям, встречающимся при замещении между элементами, а потому показывающий также, какие могут быть случаи замещения между кислородом и водородом, как составными частями воды. Закон замещения можно вывести из механических начал, если принять понятие о частице, как системе элементарных атомов, находящихся в известном химическом и механическом равновесии. Уподобляя частицу системе тел, находящейся в движении, напр, совокупности солнца, планет и спутников, находящихся в условиях подвижного равновесия, мы должны ждать, что в этой системе действие одной части равно противодействию другой, как следует по третьему механическому закону Ньютона. Следовательно, если дана частица сложного тела, напр., Н-0, NH1, Na l, H l и т. п., то всякие ее две части должны в химическом отношении представлять нечто одинаковое, силы и способности сходственные, а потому всякие две части, на которые можно разделить частицу сложного тела, способны замещать друг друга [187]. Между сложными телами, оче- [c.184]

    Тот же закон дает возможность ожидать и видеть соотношения трехазотистого водорода НЫ с другими соединениями азота. [c.189]

    Основные продукты фотохимических реакций — альдегиды, кетоны, оксиды углерода, органические нитраты и оксиданты (озон, диоксид азота, пероксиацетилиитрат и другие органические пероксидиые и гидропероксидные соединения, пероксид водорода). [c.34]

    Водород по определению имеет валентность, равную 1. Валентность кислорода в Н2О и большинстве других соединений 2, но в пероксиде водорода, Н2О2, она равна 1. Пользуясь данными табл. 6-1, можно видеть, что С1 и Вг имеют валентность 1, Са 2, а Аз 3 углерод может проявлять различные валентности 4, 3, 2 и 1. Сера имеет валентность 2 в Н25, 4 в 502 и 6 в 50з. Валентность азота в аммиаке 3, в N02 4 и в N20 2. Отметим, что в указанных бинарных соединениях суммарная валентность всех атомов одного элемента точно равна суммарной валентности всех атомов другого элемента. В 50з один атом серы с валентностью 6 соединен с тремя атомами кислорода, имеющими каждый валентность 2. Формулировка понятия валентности, или емкости насыщения, была первым шагом на пути создания теории химической связи. Вторым шаю.м явилось введение положительных и отрицательных валентностей, с условие.м чтобы алгебраическая сумма валентностей всех атомов в молекуле была равна нулю Водороду приписывалась валентность -Ь 1 следовательно, чтобы сумма валентностей всех атомов в молекуле воды Н2О оказалась равной нулю, [c.294]

    Кроме NHs, известны два других водородных соединения азота— гидразин N2H4 и азотистоводородная кислота HN3 (есть еще несколько соединении азота с водородом, но они малоустойчивы и практически не используются). [c.401]

    В 1923 г. Д. Бреистед и Т. Лоури, независимо друг от друга, предложили так называемую протолитичсскую теорию кислот и оснований, получившую в настоящее время наибольшее распространение. Согласно этой теории кислоты — это соединения, молекулы которых в определенных условиях способны быть донорами протонов основания — это соединения, способные присоединять протоны, т. е. быть пх акцепторами. Очевидно, что молекулы, способные отщеплять протоны, должны иметь в своем составе атомы водорода, поляризованные положительно. Следовательно, кислоты в соответствии с протолитической теорией представляют собой водородсодержащие соединения. Такое заключение находится в соответствии с общепринятым практическим представлением о составе кислот. Что касается оснований, то ими могут быть соединения разнообразного состава, так как для того, чтобы присоединять протоны, соединению совсем не обязательно иметь в своем составе какие-то определенные элементы. Основания встречаются среди соединений различных классов гидроксиды, амиды и ими-ды активных металлов, водородные соединения азота, оргаьн1чес-кие амины, азотистые гетероциклические и другие соединения. [c.181]

    Азот — основной компонент атмосферы Земли (78,09% по объему, или 75,6% по массе, всего около 4-10 кг). В космосе он занимает четвертое место вслед за водородом, гелием и кислородом. Свободный азот вместе с аммиаком N [3 и хлоридом аммония ЫН. С присутствует в вулканических газах. Органические соединения азота содержатся в нефти и угле. В живых организмах его до 0,3% в виде соединений. Присутствие связанчого азота в почве — обязательное условие земледелия. Растения, получая азот из почвы в виде минеральных солей, используют его для синтеза белков, витаминов и другие жизненно важных веществ. [c.119]

    Реакция диспропорционирования радикалов ароматических углеводородов является одним из частных случаев одного из наибо.хее общих законов, управляющих процессами в органической химии. Этот закон может быть сформулирован следующим образом реакции самопроизвольного превращения органических молекул, без участия посторонних соединений, всегда идут в сторону накопления в одной части системы максимально обуглеро-женных молекул или частей молекулы, а в другой — соединений или частей молекулы, обогащенных водородом, кислородом, серой и азотом органическая молекула стремится к состоянию минимального уровня свободной энергии, перестраивая "свою структуру в направлении возникновения группировок атомов, близких к углекислоте, воде, метану, графи. у, сероводороду, aMMHaiiy и другим веществам, т. е. к соединениям с минимальным уровнем термодинамического химического потенциала. [c.111]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    При окислении солей диазония перекисью водорода в щелочном растворе (т. е., собственно говоря, при окислении диазотатов) образуются нтроанилиды и нитрозофенилгидроксиламиновые соединения. Такое течение реакции интересно постольку, поскольку оно показывает, что окислению могут подвергаться как один, так и другой атомы азота молекулы диазотата. [c.593]

    Затруднения на пути мыслимого процесса приводят и к тому, что существует немало веществ, для распада которых А0< О (т. е. для их образования АО >0) тем не менее они могут существовать сколь угодно долго. Примером первого случая могут служить реакции горения различных органических соединений хотя для всех этих процессов уже при комнатной температуре АО О, эти вещества горят только при высокой температуре. Примером случая, когда АО > О, являются ацетиленовые углеводороды они неустойчивы к разложению на углерод и водород, причем их неустойчивость с ростом молекулярной массы возрастает, однако только при сысорсой температуре скорость их распада становится ощутимой. Эти обстоятельства позволяют сделать важный вывод если для образования данного вещества из элементарных веществ АО > О, то его можно получить только косвенным путем. Действительно, все оксиды хлора и азота (кроме N0) и многие другие соединения (в частности, ВаНв, 51Н4, НаТе) не могут быть получены прямым синтезом. [c.55]

    Применение. Титан и его сплавы-очень ценный конструкционный материал. Они отличаются высокой прочностью, легкостью, тугоплавкостью, химической стойкостью при обычной температуре. Титан используют также в качестве легирующей добавки и как ве цество, связываюи(ее кислород, азот, водород и другие примеси в металле а малорастворимые соединения (иослед- [c.494]

    Приведенная схема образования NH4 I наглядно показывает, что центральное положение в этом комплексном соединении занимает азот. Такой центральный атом (или ион) называется комплексообразо-вателем. Другие составные части рассматриваемого комплексного соединения по отношению к комплексообразователю расположены различно в то время как водороды непосредственно связаны с ним (находятся во внутренней сфере комплекса), ион хлора более удален (находится во внешней сфере) и, следовательно, связан значительно слабее. Различие между внутренней й внещней сферами часто оттеняют в формулах тем, что заключают первую (вместе с комплексообразова-телем) в квадратные скобки. Например, комплексное обозначение хлористого аммония будет [NHJ 1. Как эта формула, так и приведенная выше схема подчеркивают полную равноправность всех четырех расположенных около азота водородов, независимо от того, какой из них заключался в первоначально взятом аммиаке и какой был присоединен впоследствии. -  [c.407]

    Соединения с другими неметаллами. Формально к бинарным соединениям азота с галогенами относятся галогеназиды ГКз. В них атом водорода в азотистоводородной кислоте замещен на галоген. Получаются галогеназиды взаимодействием НМз или азидов металлов с галогенами  [c.266]

    В отличие от мультиплетной теории теория каталитически активных ансамблей Н. И. Кобозева предусматривает возможность существования активных центров из атомов, не входящих в кристаллическую решетку. Из этой теории следует, что лишь сочетание определенного (обычно небольшого) числа частиц катализатора (ансамбль) способно проявлять каталитическую активность. Так, для реакции соединения азота и водорода необходимо три атома катализатора (железа), сгруппированных в активный ансамбль. Для реакции присоединения водорода к органическим соединениям, ускоряемой палладием, необходимо два атома палладия и т. д. Отдельные ансамбли на поверхности твердого катализатора не могут соединяться друг с другом, потому что поверхность катализатора очень неоднородна, и частицы [c.148]


Смотреть страницы где упоминается термин Другие соединения азота с водородом: [c.192]    [c.517]    [c.57]    [c.46]    [c.106]    [c.206]    [c.135]    [c.270]   
Смотреть главы в:

Общая химия -> Другие соединения азота с водородом




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Водород соединения

Соединения азота и азота



© 2025 chem21.info Реклама на сайте