Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время псевдоожиженном слое

    В последнее время для устранения опасности каналообразования в реакторах с псевдоожиженным слоем катализатора с целью улучшения барботажа и достижения более эффективного контакта газосырьевой смеси с катализатором применяют секционирование. Для регулирования теплового режима в них используют и посекционный ввод холодного водорода. [c.50]


    Известно много методов, пригодных для определения реологических свойств жидкости, но только немногие из них дают истинную величину ее текучести. Это методы — капиллярный, падающего шара, Куэтта и крутильного маятника. В настоящее время уравнение течений, исходя из диаграммы сдвига, может быть написано только применительно к двум методам капиллярному и Куэтта Капиллярный вискозиметр нельзя использовать в псевдоожиженных системах из-за неблагоприятного пристеночного эффекта в капиллярах. Вискозиметр Куэтта может быть использован при соблюдении ряда важных условий (см. ниже). В случае вискозиметров (с падающим шаром и крутильного) не удается по диаграмме сдвига составить общее уравнение течения (известны лишь частные решения ). Добавим, что в вискозиметрах с падающим шаром очень велик пристеночный эффект. Кроме того, следует учитывать значительное нарушение структуры псевдоожиженного слоя вблизи лобовой поверхности движущегося шара .  [c.229]

    Из множества физических и математических моделей процессов в псевдоожиженном слое [20, 25, 32, 551 в настоящее время применительно к химическим реакторам, более обобщенной моделью, по-видимому, следует считать двухфазную модель [1221. [c.120]

    Время пребывания частиц катализатора в турбулентном плотном слое неодинаково. Некоторые частицы находятся в нем короткий промежуток времени, другие — длительный период и, наконец, третьи — более или менее близкий к тому периоду, который соответствует расчетному среднему времени (бср) пребывания их в слое. Этот период (бср сек.) равен частному от деления весового количества (И кг), находящегося в псевдоожиженном слое ката шзатора [c.144]

    Помимо абсолютных размеров, основным отличительным признаком одиночных пузырей в разных псевдоожиженных слоях является доля кильватерной зоны так что в общем пузыри могут различаться по внешнему виду, как показано на фото 1У-5. В настоящее время нет достоверных данных, позволяющих предсказать долю кильватерной зоны, исходя из свойс гв твердых частиц — их размеров, формы, гранулометрического состава однако рис. 1У-8 показывает, что такая зависимость будет не слишком сложной. Наибольшее влияние, видимо, будут оказывать размер и шероховатость твердых частиц или порозность [c.135]

    Предпосылки расчета реактора. По имеющимся в настоящее время, вероятно, неполным данным можно установить следующие характеристики реактора с псевдоожиженным слоем  [c.296]


    При расчете реактора с псевдоожиженным слоем, помимо кинетических аспектов, необходимо также рассматривать вопросы гидродинамики псевдоожижения. Размеры гранул, время пребывания и скорость псевдоожижения очень тесно связаны между собой. Ниже приводится пример такого расчета. [c.297]

    В настоящее время делаются попытки установить основные параметры процесса — соотношение воздуха и углеводорода, температуру и время контакта на установках с псевдоожиженным слоем катализатора. [c.174]

    В настоящее время изучаются процессы более рационального получения как водяного газа, так и продуктов его гидрирования. Как выяснилось, получать водяной газ из метана посредством неполного сжигания его в чистом кислороде при 15—17 ат более выгодно, чем разложением парами воды. С другой стороны, гидрирование окиси углерода легче осуществить, применяя катализатор в псевдоожиженном слое в этом случае катализатор является также и теплоносителем, что позволяет точно поддерживать температуру. В таком процессе применяют железные катализаторы при 315 °С и 16 ат, степень конверсии при этом достигает 90%, а выход бензина 80% (октановое число 80), считая на полученный конденсат. Выход продуктов реакции в единицу времени и на единицу объема катализатора также намного больше, чем в процессах с неподвижным слоем катализатора. Образуются и кислородсодержащие продукты. [c.256]

    Находят применение элементы из оребренных труб. Устройства, находящиеся внутри псевдоожиженного слоя, должны быть надежно закреплены, так как во время работы аппарата- на них действуют значительные усилия. Высоту слоя продукта регулируют с помощью переливных планок, но иногда выгрузку осуществляют из нижней части слоя и уровень поддерживают, регулируя скорость выгрузки материала. [c.179]

    Стабильностью катализатора характеризуется неизменяемость его свойств (главным образом каталитической активности) в процессе работы в течение длительного времени стабильность имеет такое же важное значение, как и каталитическая активность. Стабильность определяется временем, в течение которого катализатор сохраняет свои качества чем больше это время, тем стабильнее катализатор. Катализаторы, приготовленные из природных материалов, обычно имеют более низкую начальную активность при удовлетворительной стабильности, что позволяет выгодно использовать их в процессе крекинга с псевдоожиженным слоем катализатора. [c.15]

    При повышенном содержании SO2 на входе в реактор (например, 11% SO2 и 10% О2) температура в первой секции составляет 550 °С, степень преврашения — 75%. В этом случае газ, входящий в первую секцию псевдоожиженного слоя, должен иметь температуру 325 °С, а при более высоком содержании SO2 — еще меньшую температуру. С другой стороны, температура газа, содержащего 7% SO2 и 11% О2 на входе в реактор с неподвижным слоем, должна составлять 440°С при большей концентрации SO2 и меньшей О2 температура должна повышаться. Отвод тепла из реакторов с псевдоожиженным слоем может осуществляться с помощью теплообменников, погруженных в слой и обладающих малой поверхностью ввиду высоких коэффициентов теплообмена. При охлаждении водой значения коэффициента теплообмена между водой и слоем могут достигать 100—200 ккал град), в то время как для неподвижного слоя эта величина составляет 5—9 ккал (м -ч-град). В реакторе с псевдоожиженным слоем можно использовать более мелкозернистый катализатор из зерен диаметром 0,75—1,5 мм он обладает намного большей поверхностью по сравнению с крупнозернистым катализатором в неподвижном слое, используемым на начальных и серединных ступенях всего на 30—50%. Помимо этого, в псевдоожиженном слое отсутствует спекание катализатора, которое в течение одного года увеличивает гидравлическое сопротивление в 2 раза. Необходимое количество катализатора уменьшается вследствие лучшего использования поверхности зерна и возможности поддержания температурного режима, близкого к оптимальному. [c.356]

    Регенераторы также работают с использованием псевдоожиженного слоя и достигают весьма больших размеров. Для выжигания 16 000 кг кокса, образующегося на поверхности катализатора, внутренний диаметр регенератора должен равняться 16,3 м, а высота цилиндрической части —9,6 м. Объем цилиндрической части составляет 2000 м . В 1 этого объема сжигается 8 кг кокса в 1 ч. Катализатор поступает в реактор при температуре 460—500°С. Температура псевдоожиженного слоя, в котором выжигают кокс, достигает 540—620°С. Давление в регенераторе составляет 1,2—2,4 ат. В зависимости от размеров установки и скорости циркуляции в регенератор может поступать до 50 т катализатора в 1 мин. Время пребывания катализатора в регенераторе составляет 5—20 мин. Скорость газового потока равна 0,45 м/сек. [c.359]


    Несмотря на большое число исследований, в настоящее время невозможно точно предсказать поведение псевдоожиженной системы исходя только из физических свойств твердых частиц, ожижающего агента и рабочих условий процесса. Более того, часто отмечают трудности при определении начала псевдоожижения именно таких материалов, которые способны образовать однородный, хорошо псевдоожиженный слой. [c.42]

    Из регенератора (диаметром 1,22 м) установки каталитического крекинга отбирали пробы газа в различных точках псевдоожиженного слоя катализатора . Входное отверстие пробоотборника было снабжено фильтром для задержки катализатора, а отводная трубка — рубашкой для охлаждения отбираемого газа. Скорость газа в регенераторе во время отбора проб составляла примерно 45 см/с, причем 72,5% частиц катализатора равномерно распределялись по размеру в диапазоне от 40 до 100 мкм. Состав газа во всех точках слоя был примерно одинаковым, что указывает на быстрое перемешивание. Содержание кислорода, измеренное в слое, составляло —0,2 мол.% (в отходящих дымовых газах — 1,1%). Это было объяснено проскоком газа, богатого кислородом, с пузырями, часто минующими пробоотборник. [c.258]

    Относительно размеров гидродинамического следа за пузырями в псевдоожиженных слоях в настоящее время нет теоретических [c.281]

    В малых реакторах с псевдоожиженным слоем равномерное распределение газа можно обеспечить путем использования решетки с мелкими порами — пористые или полученные спеканием пластины. Однако в аппаратах промышленного масштаба такие решетки, как правило, неприемлемы, и обычно применяют перфорированные либо колпачковые тарелки или другие газораспределительные устройства. Тип последнего может оказывать существенное влияние на рабочую характеристику реактора Было, в частности, установлено что после замены полученной спеканием решетки на перфорированную тарелку конверсия упала на 30% это соответствует более ранним исследованиям , показавшим, что однородность псевдоожижения меньше при грубом диспергировании газа. В то же время отмечают , что неблагоприятное влияние грубого газораспределения, по всей вероятности, вырождается при высоте слоя более 0,45 м. [c.369]

    Здесь подразумевается, что за время контакта пакета с поверхностью тепловая волна не достигает его противоположной границы именно этот случай характерен для псевдоожиженного слоя Базируясь на выражении (Х,2), можно подойти к теоретическому определению коэффициента теплоотдачи в псевдоожиженном слое. [c.420]

    Для большинства псевдо ожижаемых зернистых материалов, вследствие малого размера частиц и достаточно большого значения кз, В1 <0,25, и внутреннее термическое сопротивление редко лимитирует теплообмен. О закономерностях переноса тепла в условиях внутренней задачи для псевдоожиженных систем, можно, видимо, в настоящее время судить лишь косвенно — по данным о переносе вещества (математически оба процесса описываются аналогично), в частности, на примере сорбции псевдоожиженным слоем силикагеля водяных паров из воздушного потока Установлено, в частности, что в случае внутренней [c.466]

    Воронкообразную напорную трубу (горизонтальную или вертикальную) использовали для питания смесью газ—твердые частицы в плотной фазе, забираемой из псевдоожиженного слоя. В то время как в обычных пневмотранспортных линиях расходная концентрация изменяется примерно в пределах от 0,1 до 5,0, при использовании питателя с псевдоожиженным слоем можно работать с расходной концентрацией от 25 и даже до 900. Виды потоков в плотной фазе рассмотрены в предыдущих разделах. [c.603]

    Следует, однако, отметить некоторые исключения из этого общего правила. Движение жидкости не может быть описано моделью стержневого потока с продольным перемешиванием при газожидкостном псевдоожижении слоя стеклянных частиц размером 0,25 мм, а в случае низких скоростей жидкости (3,6 см/с и ниже) — также и при использовании частиц диаметром 1 мм. В этих системах время пребывания жидкости, найденное из опытов с трасером, значительно ниже среднего времени пребывания, рассчитанного по задержке твердой фазы, вычисленной на основании данных о расширении слоя и результатов опытов с меченым газом. [c.668]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    Приведенный вьпие анализ относится только к монодисперсным слоям или смесям узкого гранулометрического состава. В случае широких фракций процесс осложняется воздействием мелких частии на крупные, что приводит к уменьшению скорости полного псевдоожижения слоя. Величина на практике меньше скорости начала псевдоожижения слоя, составленного из наиболее крупных его частиц. В то же время псевдоожиженный слой удерживает мелкие частицы, препятствуя их мгновенному выносу из слоя при достаточно высоких скоростях газа. В связи с этим приведенные зависимости для определения диапазона псевдоол<иженного состояния применительно к полидисперспым системам следует считать приближенными. [c.163]

    Как указывалось выше, установки с дви-жущиА1Ся н псевдоожиженным слоем катализатора применяются также для процессов дегидрирования бутана и изопентана, причем конструкция реакторных блоков этих установок аналогична конструкции реакторных блоков установок каталитического крекинга. В настоящее время для дегидрирования бутана также разрабатываются секционированные аппараты с кипящим слоем. [c.288]

    В последнее время значительный интерес вновь привлекают работы на стационарных катализаторах. Недавно разработан процесс, в котором циркулирующее масло и синтез-газ пропускают через слои гранулированного ст ациопарного катализатора, все время находящегося в слабом движении. При этом процессе получают более значительные выходы дизельной фракции и парафина по сравнению с процессом с псевдоожиженным слоем железного катализатора. Кроме того, уменьшается нежелательное образование метана и этана. [c.75]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    Действительно, давно было замечено, что при ожижении твердых частиц газами псевдоожиженный слой не однороден [189]. Он представляет собой слой взвешенных частиц с достаточно низкой порозностью, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. Во время подъема пузыри могут увеличиваться в размерах, коалесцировать, что иногда приводит к образованию поршневого режима псевдоожижения, представляющего собой чередование сгустков частиц и газовых полостей, занимающих все сечение аппарата. Поршневой режим движения твердой фазы наблюдается также и при транспортировании твердых частиц газом в вертикальных трубах. Ряд авторов, первым из которых бьш, по-видимому, Уоллис [94], вьщвинули предположение, согласно которому пузыри и поршни являются следствием нарастания всегда присутствующих в потоке малых возмущений порозности. Однако в экспериментах неустойчивость наблюдается далеко не во всех дисперсных потоках. Так, ожи-жаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указьгеают на явный переход от однородного режима псевдоожижения к пузырьковому в случае увеличения скорости газа [190]. Не наблюдаются неоднородности и при движении небольших капель и пузырей в жидкостях. [c.134]

    Определение коэффициента псевдотурбулентной диффузии проводилось только для псевдрожиженных слоев. Предпринимались как экспериментальные [197-200], так и теоретические исследования [201, 202]. Тем не менее, достаточно надежные корреляции для определения зависимости (2.186) в настоящее время отсутствуют. По данным [199], для псевдоожиженных слоев, ожижаемых жидкостью, коэффициент псевдотурбулентной диффузии изменяется в пределах 0,61-10 - [c.145]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    В течение всего времени работы псевдоожиженного слоя необходимо поддерживать надлежащий гранулометрический его состав. Псевдоожиженные слои катализаторов служат продолжительное время, так что гранулометрический состав их постепенно меняется в результате истирания или агломерации. Мелкие частицы уносятся потоком газа чаще всего в количестве, не большем 0,8 кг1м . Эти частицы обычно извлекаются из газа в многоступенчатых циклонах или электрофильтрах и возвращаются при необходимости обратно в слой для поддержания требуемого соотношения мелких и более крупных частиц. Непрерывный вывод [c.255]

    Обычно в реакционной зоне ь[ет каких-либо устройств, но в этой гастн аппарата иногда размещают решетки из труб, ограничивающие внутреннюю циркуляцию сырья и катализатора. Это уменьшает возможность попадания прореагировавших паров из верхне г части псевдоожиженного слоя в нижнюю и проскока сырья, вследствие чего более строго выдерживается время пребывания сырья, [c.222]

    Реконструкция реактора была направлена в основном на уменьшение объема реакционной зоны с соответствующим увеличением скорости подачи сырья. От псевдоожижениого слоя в цилиндрической части реактора отказались. Затем заменили конусное устройство аппарата цилиндром (стаканом), позволявшим еще уменьшить объем реакционного слоя и улучшить режим вывода сырья и катализатора. Реконструированные установки 1-А известны в настоящее время под индексом 1А-1М. [c.55]

    Эффективная динамическая вязкость псевдоожиженного слоя определялась с помощью вискозиметра Куэтта при использовании газообразного и жидкого ожижающих агентов. В обоих случаях полученные значения вязкости слоя очень велики (порядка 10—20 П), так что вязкость ожижающего агента, по-видимому, очень мало влияет на сопротивление слоя сдвигу. По этой причине целесообразно рассматривать измеренную опытнылг путем вязкость как Соответствующая объемная вязкость в настоящее время не люжет быть измерена экспериментально предполагается, что величина /. превышает х . Относительно р% нет ни теоретических, ни экспериментальных данных. При анализе влияния изменений граничных условий на свободной по- [c.90]

    Не исключено, однако, что в слое болеё крупных частиц длина газовых пробок будет превышать среднюю величину, главным образом, из-за перемещения некоторых пробок вверх асимметрично (вдоль стенки аппарата) со скоростью, превышающей вычисленную по уравнению (У,11). Это было особенно заметно в псевдоожиженном слое квадратного сечения 0,61 X 0,61 м. В то же время газовые пробки вблизи газораспределительного устройства бывают меньше и расположены они ближе друг к другу, нежели полностью развитые пробки. Это позволяет предполагать, что уравнение (У,33) пригодно для достаточно точной оценки средней длицы газовых пробок в случае не очень мелких частиц dp -<60—80 мкм). При малом диаметре слоя (25 мм) наблюдаются газовые пробки значительно большей длины, по-видимому, из-за образования мостиков между ними [c.199]

    Дальнейшее развитие теории псевдоожиженного слоя возможно только при учете сил статического и динамического взаимодействия между соседними твердыми частицами, что позволит приблизить теоретические построения безвихревого движения к реальной обстановке. Однако для этого необходимо располагать значительно большим объемом экспериментальных данных по реологии системы, чем имеется в настояп ее время. [c.250]

    Совсем недавно было показано что в слое со свободным барботажем пузырей средние скорости пузыря часто превышают теоретические скорости подъема газовой пробки и обычно значительно больше теоретической скорости подъема пузыря. При псевдоожижении слоев кварцевого песка U f = 2,5 см/с) в аппарате квадратного поперечного сечения площадью 0,37 м установлено что скорость подъема пузыря много выше, чем мон<но ожидать, если принять скорость пузыря в коллективе равной иьоа-Следовательно, при использовании различных моделей можно в настоящее время лишь постулировать, что уравнение (VII,29а) применимо к слоям со свободным барботажем пузырей, и затем убедиться, что допущение о более высоких значениях па не дает осложнений. [c.278]

    Для выявления закономерностей перемешивания при протекании химических процессов в реакторе с псевдоожиженным слоем необходимо дополнительно рассмотреть некоторые вопрогсы. Несомненно, нужно выяснить, действительно ли одинаковы концентрации реагента в гидродинамическом следе и пузыре если при этом первая из них равна концентрации в непрерывной фазе, то можно пренебречь обратным перемешиванием за счет гидродинамического следа. В то же время если постулировать одинаковые концентрации в следе и в пузыре, то можно преувеличить роль химической реакции в системе, где определяющей стадией является обмен газом. Выше уже было показано, что деформация концентрационного профиля сама по себе еще не доказывает наличия обратного перемешивания. [c.319]

    В этих условиях эффективность реактора с псевдоожиженным слоем будет, возможно, соответствовать теоретически рассчитанной по моделям, учитывающим межфазный обмен газом только за счет его циркуляции через пузырь и облако. Например, при использовании катализатора с размером частиц 360 мкм было установлено что экспериментальные данные хорошо согласуются с упомянутой выше моделью Однако при уменьшении размера частицы падает интенсивность циркуляции газа через облако и пузырь объем облака становится меньше, так что газ из нузыря контактирует с относительно меньшим числом твердых частиц. Отношение Ul,lu f при этом весьма велико, поэтому время пребывания газа, находящегося в пузыре, составляет лишь некоторую долю от времени его пребывания в непрерывной фазе следовательно, степень проскока будет высокой. Эти общие рассуждения не подкреплены экспериментальными наблюдениями. [c.363]


Смотреть страницы где упоминается термин Время псевдоожиженном слое: [c.127]    [c.66]    [c.527]    [c.295]    [c.686]    [c.53]    [c.21]    [c.195]    [c.197]    [c.506]    [c.539]    [c.565]    [c.606]   
Справочник сернокислотчика Издание 2 1971 (1971) -- [ c.526 ]




ПОИСК





Смотрите так же термины и статьи:

Время пребывания сорбента в пульсационных сорбционных колоннах с псевдоожиженным слоем

Время пребывания частиц в псевдоожиженном слое

Распределение по времени пребывания и размерам частиц в псевдоожиженном слое



© 2025 chem21.info Реклама на сайте