Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук водорода

    Ири действии хлористого водорода в присутствии солянокислого раствора хлористой меди (одновалентной) прп 40—45° образуется 2-хлорбута-диен (хлоропрен). Это соединение кипящее при 60°, легко полимеризуется в особо маслостойкий каучук (неопрен, совпрен). [c.254]

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]


    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]

    Циклизация синтетического полиизопрена происходит точно таким же образом, как и природного каучука при циклизации образуется продукт в общем такого же качества, как и циклический натуральный каучук. Это сходство интересно потому, что оба названных выше вещества имеют относительную общность их строения. В растворе при взаимодействии с хлорным оловом температура реакции достигает лишь 70—75°. Под действием фтористого водорода, который циклизует природный каучук [6], полиизопрен может циклизоваться с образованием смолы. [c.215]

    Хлор активно взаимодействует с углеводородом природного каучука, но замещение идет прежде присоединения и таким образом является причиной циклизации. Так реагируют газообразный хлор с природным каучуком в растворе и жидкий хлор с каучуком, подобным же образом идет реакция и под давлением. Течение реакции согласно Блумфилду, определенное по количеству выделившегося хлористого водорода, можно [c.219]

    Хроматографический анализ парафинов проводят при 250— 450°С. Пробу вводят в разделительную колонку, где она распределяется по стационарной фазе, находящейся на носителе, компоненты выводят из колонки газом-носителем — гелием или водородом. В качестве стационарной фазы используют асфальтены, силиконовые масла, каучуки и др. Для идентификации пиков и количественного определения содержания углеводородов в исследуемую пробу вводят индивидуальные углеводороды. На хроматографе удается определить состав парафинов до С55. [c.34]


    Сополимеризация проводится в реакторе 14 при температуре —20°- +20°С и давлении, определяемом концентрацией мономеров в зоне реакции и температурой. В реактор вводят компоненты каталитического комплекса, этилен, пропилен и третий мономер. Газовая фаза, состоящая в основном из пропилена (около 80%), этилена и водорода, забирается компрессором 15, сжимается и подается в конденсатор 16. Суспензия каучука в пропилене непрерывно выводится на дальнейшие стадии переработки. [c.308]

    Замещение в каучуках водорода фтором приводит к благоприятному изменению свойств каучуков и получению технически ценных фторсодержащих каучуков. В последнее время находят применение фторированные полиэфиры, полиалкилакрилаты и силоксановые полимеры. [c.46]

    Некоторые из упомянутых химических групп имеются в усиливающих кремнеземах. Однако, по-видимому, наиболее важными группами здесь являются силанольная 81—ОН и силоксановая 81—0—81. Для улучшения диспергирования белой сажи в каучуке водород гидроксильной группы иногда заменяют на метильную или бутильную группу в результате реакции силанольной группы с соответствующим спиртом. [c.258]

    Рис, 8.17. Поперечное связывание в метилсилоксане образуется силиконовый каучук (водород выделяется в результате окисления). [c.266]

    Акрилонитрил вырабатывают путем взаимодействия ацетилена и цианистого водорода в присутствии хлористой меди и хлористого аммония ири температуре 80—90°. Получающийся продукт улавливается в абсорбере водой. Водный раствор акрилонитрила поступает в десорбционную колонну, где акрилонитрил отгоняется ири помощи водяного пара. После отделения от воды и очистки дистилляцией чистота продукта достигает 99,9%. Акрилонитрил используется для получения синтетического каучука и новых акриловых волокон (орлан, акрилан и цианамид). [c.162]

    Опасность таких комбинированных систем заключается в том, что при нарушении схемы расстановки заглушек возможно попадание продуктов (воздух, водород и др.) в инертный газ. Такой случай произошел на одном заводе синтетического каучука в цехе получения инертного газа при переключении на резервный компрессор из-за неправильной расстановки заглушек воздух попал в систему инертного газа. [c.227]

    В начальной стадии реакции, до разложения с выделением сероводорода, отношение водород углерод остается постоянным это справедливо и для вулканизации каучука, включая образование эбонита с высоким соде])жанием серы. При более высоких температурах бутилены и бутадиены с серой подвергаются вторичным реакциям с образованием тиофена [36]. [c.344]

    Влияние мористого водорода на конверсию мономеров /) и молекулярную массу (2) каучука. [c.345]

    Важным применением экстракции в нефтяной промышленности является выделение бутадиена-1,3 (сырья для синтеза каучука) пз смеси углеводородов С4, получаемых при отнятии водорода от бу-танов. Эти соединения кипят при близких температурах, поэтому разделение их путем ректификации невозможно. Для разделения в промышленном масштабе применяется водный аммиачный раствор ацетата меди концентрацией 3—3,5 моль/л [74, 89]. Другие растворители оказались менее пригодными [98]. В аммиачном растворе диолефины и углеводороды Д1 енового типа (бутадиен) образуют соединения с ионом меди Си" . В дальнейшем раствор очищается от других растворенных в нем углеводородов путем продувания газом с высоки.м содержанием бутадиена, а затем производится десорб- [c.402]

    Эти полимеры содержат некоторое количество атомов водорода, но количество этих атомов сравнительно невелико и они со всех сторон экранированы полностью фторированными группировками каучуки такой структуры весьма интересны с точки зрения их свойств — морозостойкости и термостабильности. [c.513]

    Углеводороды представляют собой соединения, включающие только атомы С и Н. Простейшими углеводородами являются линейные полимеры с повторяющейся структурной единицей —СН2—, которые оканчиваются атомами водорода. Другие углеводороды состоят из разветвленных цепей или циклически связанных атомов. Бутан-газ, используемый для отопления и приготовления пищи,-представляет собой тетрамер (четыре структурные единицы). Полимеры, содержащие от 5 до 12 углеродных звеньев, входят в состав бензина одним из примеров является гептан (см. рис. 21-1). Керосин представляет собой смесь молекул, содержащих от 12 до 16 атомов углерода, а смазочные масла и парафиновый воск-смеси цепей с 17 и более атомами углерода. Полиэтилен содержит от 5000 до 50000 мономерных единиц —СН2— в каждой цепи. Существует много других органических цепей, содержащих кроме С и Н еще и другие атомы. Неопреновый каучук, тефлон и дакрон (см. рис. 21-1) являются синтетическими полимерами, а полипептидная цепь, показанная в самой нижней части рис. 21-1, представляет собой полимер, из которого построены все белки-шелк, шерсть, волосы, кол- [c.265]


    Математическая модель реактора состоит из уравнений тепло-и массопередачи, а также зависимостей вязкости (по Муни) полимера от режимных параметров процесса полимеризации. В дополнение к известной модели процесса [99, с. 16] введены материальный баланс по водороду, уравнения смешения для мономера в возвратной фракции тв.ф и показателя качества Муни Мг.к готового каучука. При записи модели сразу учтем, что выходные переменные -го реактора являются входами в 1 + 1)-й реактор. [c.158]

    Сырьем для выделения водорода могут служить й некоторые газы нефтехимических производств, например водород образуется при дегидрировании углеводородов. Такими процессами являются пиролиз углеводородов в производстве олефинов, а также дегидрирование бутана и бутилена в производстве синтетического каучука. [c.37]

    При действии ионизирующих излучений выделяются низкомолекулярные летучие соединения, основную часть которых составляет водород (рис. 6.7). Например, при радиолизе углеводородных каучуков водород составляет около 90% общей массы летучих соед[ неннй. HavTH4ne других, кроме водорода, ннзкомолекулярных веществ определяется типом полимера при распаде тетрафтор-этилена образуется F4, при радиолизе бутадиен-нитрильного каучука выделяется H N и т. п. [c.156]

    Во многих случаях желательно проводить реакции свободно-радикальной полимеризации при комнатной или даже при еще более низких температурах. Ярким примером такого типа является производство синтетического каучука, где наиболее желательными физическими свойствами обладают полимеры, получаемые нри температурах ниже 0°. Обычным методом ипициирования полимеризации при подобных условиях является применение в качестве инициатора такой комбинации реагентов, которая реагирует с образованием свободных радикалов в результате какой-либо окислительно-восстановительной реакции. Исследовано большое количество таких восстановительно-окислительных систем особенно для эмульсионной полимеризации [8, 76]. Одна из таких систем, по-видимому, типичная и довольно подробно изученная, является комбинацией иона двухвалентного железа и перекиси водорода [18]. В разбавленном водном растворе кислоты они реагируют нормально, давая гидроксилы и ионы трехвалентного железа в двухстадипном процессе  [c.135]

    При воздействии переменного тока высокого напряжения на невулка-низированный природный каучук, растворенный в декалине, в атмосфере водорода наблюдается образование циклокаучука. [c.214]

    Требуются особые условия для присоединения водорода к углеводороду природного каучука. Так, Пуммерер и Буркхард брали 0,2— 0,6 %-ный раствор очищенного углеводорода в гексане или метилциклогексане и вели гидрирование в присутствии платиновой черни в течение от 3 до 170 час. при температурах от комнатной до 70—80°. Анализ продуктов соответствовал теории для ( sH o). Гидрированный каучук был почти бесцветен и растворялся в эфире [30]. [c.218]

    Гидрохлорид природного каучука был получен действием жидкого хлористого водорода и последующим нагреванием под давлением пропусканием газообразного хлористого водорода в раствор вальцованного каучука подвешиванием тонких пластин каучука в емкости, заполненные газообразным хлористым водородом. Газообразный хлористый водород можно также пропускать в латекс природного каучука при условии, что латекс предварительно стабилизирован путем добавки к нему катионного мыла, типа фиксанол , т. е. бромида цетилпиридина, или же неионного мыла типа эмульфор О , олеилалкоголь-полиэтиленоксид.. Гидрохлорид природного каучука, используемый для производства прозрачных пленок, применяемых для упаковки пищевых продуктов, гидро-хлорируется в бензольном растворе, затем смесь оставляется на некоторое время для созревания избыток хлористого водорода нейтрализуется. Теоретически вычисленное содержание хлора — 33,9%, но продукты с желательными свойствами получаются уже при содержании в них хлора в пределах 28—30%. Если реакция проходит слишком далеко, продукт становится нерастворимым. [c.222]

    Гидрохлориды можно получить также из изопренстирольных и ди-метилбутадиеновых полимеров. Полибутадиен, а также сополимеры бутадиепстирола (GR-S) и бутадиепакрилонитрила (нитрильный каучук), по-видимому, не присоединяют хлористого водорода, так как в них нет метильных групп, присоединенных к углероду у двойной связи [6, 7, 34]. [c.223]

    Моно- и диэтаноламины используются для удаления двуокиси углерода и сероводорода из газов. Окись этилена реагирует с цианистым водородом, в результате чего получается этиленцианогнд-рин последний нри гидратации образует акрилонитрил, являющийся основой для производства определенных синтетических волокон, вязкостных присадок к маслам инитрилакрильного каучука. [c.580]

    Температуры стеклования таких каучуков на 80—100°С выше, чем у имеющих примерно такую же термостойкость каучукоз на основе полидиметилсилоксана, а их ненаполненные вулканизаты при комнатной температуре в десятки раз прочнее, чем ненаполненные вулканизаты силоксановых каучуков. Однако водородные связи, особенно в данном случае, когда атом водорода связан с атомом углерода, весьма слабы и легко разрушаются при нагревании, вследствие чего прочность ненаполненных резин из фторкаучуков при высоких температурах резко снижается, приближаясь к прочности силоксановых резин. [c.506]

    Наиболее пригодными для нанесения покрытий из растворов являются жидкие каучуки. По своей химической природе они представляют низкомолекулярные полихлоропрены и родственны стандартному хлоропреновому каучуку — наириту. Основным сырьем для получения жидкого наирнта, так же как и для получения обычного высокомолекулярного наирита, являются дешевые п доступные газы — ацетилен п хлористый водород. [c.444]

    По стойкости к полярным растворителям — сложным эфирам, кетонам, тетратидрофурану, окислителям, основаниям, хлорсуль-фоновой кислоте и фтористому водороду резины на основе пер-фторированных каучуков типа СКФ-460 и ЕСД-006 значительно превосходят другие резины, в том числе и резины на основе сополимеров винилиденфторида. Вулканизаты на основе перфторалкилентриазиновых эластомеров совершенно не стойки к щелочам и аминам. [c.520]

    Синтез акрилонитрила из ацетилена протекает вследствие взаимодействия последнего с цианистым водородом на катализаторах. Указанный способ широко распространяется и является конкурирующим с методом получения акрилонитрила из этилена п синильной кнслоты. В 1958 г. мощность производства акрилонитрила в США достнгла 135 тыс. mizod. Акрилонитрил, как указывалось ранее, необходим для получения специального нитрильного каучука, а также полиакрилонитрила, служащего для выработки разработанного в СССР искусственного волокна нитрон — заменителя шерсти. [c.80]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Полихлоропреновые обкладки противостоят одновременному действию коррозионных и абразивных сред, что часто встречается в химической промышленности. Имеется успешный опыт защиты аппаратуры на некоторых химических заводах с помощью паиритовых обкладок. Обкладками из хлоропреновых каучуков защищены от коррозии трубопроводы, по которым транспортируется хлористый водород, электролизеры, бункера, монтежю и другие резервуары, в том числе и такие крупные, как железнодорожные [и1стерны. Обкладки железнодорожных цистерн подвергают самовулканизации без подогрева, которая летом завершается примерно за месяц. Гуммированные аппараты меньших размеров вулканизуют ири 80—90° С в воздушной камере полые объекты, которые нельзя демонтировать, можно прогреть с помощью вентилятора, соединенного с калорифером. [c.442]

    Последнее, весьма важное обстоятельство объясняется высокой энергоемкостью этих производств. Так, на выработку 1 т спиртов, синтезируемых из окпсп углерода и водорода, расходуется не менее 2100 квт-ч., на тонну уксусной кислоты — 5500—6000 квт-ч., вискозного шелка —8600 квт-ч., синтетического каучука —15 ООО квт-ч. и выше (в зависимости от метода и разновидности СК) на изготовление тонны ацетатного шелка требуется 20 ООО квт-ч, и т. д. [1]. [c.454]

    Совсем иное положение имело место в Германии, где ацетплен, а также окись углерода и водород являлись основными видами сырья, из которого получали 1) весь синтетический каучук (общая продукция которого в годы войны превышала 100 ООО т) 2) продукция ряда этилена (от гликоля до синтетических смазочных масел), а также разнообразные виниловые смолы 3) углеводороды, метанол, высшие спирты и разнообразные производные последних в количествах, измеряемых сотнями тысяч тонн. [c.479]

    В окисленном асфальте сильно повышается величина отношения асфальтейы/смолы, что результируется в некотором увеличена его молекулярного веса, повышении твердости и хрупкости, снижении эластичности температура размягчения повышается, не-нетрация снижается. В элементном составе наблюдается изменение идет заметное обогащение серой и углеродом и обеднение водородом (отношение С/Н повышается). Почти весь кислород, содержащийся в 302, выделяется в виде реакционной воды. Это обстоятельство, а также накопление серы в окисленном битуме, несомненно, указывают на то, что основным агентом дегидрирования при воздействии па нефтяные остатки двуокиси серы является содержащийся в ней кислород сера же, если и участвует в процессе дегидрирования, то лишь в незначительной степени. Основное направление ее действия состоит в сшивании углеродных скелетов с образованием трехмерных структур. Процесс этот напоминает вулканизацию каучука при нагревании с элементной серой. Вновь образовавшиеся молекулы асфальтенов в результате конденсации двух и более молекул ароматизированных в результате дегидрирования углеводородов и смол способствуют накоплению в битуме более жестких с меньшим молекулярным весом асфальтенов, чем первичные асфальтены. Эти новые полициклоароматические кон- [c.85]


Смотреть страницы где упоминается термин Каучук водорода: [c.319]    [c.122]    [c.213]    [c.215]    [c.221]    [c.224]    [c.309]    [c.465]    [c.484]    [c.60]    [c.14]    [c.653]    [c.233]    [c.483]   
Методы разложения в аналитической химии (1984) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Водород хлористый реакция с каучуком

Каучук дибромид реакция с хлористым водородом



© 2025 chem21.info Реклама на сайте