Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамические волны

    Здесь же следует упомянуть и о применении дисперсии звука для исследования скоростей обратимых реакций в системах с динамическим равновесием. Если звуковая волна с частотой V проходит сквозь равновесную систему, то при частоте, соответствующей частоте одной из происходящих в системе реакций, будет наблюдаться аномально большая дисперсия звуковой энергии. [c.64]


    Для нахождения динамических характеристик колонных аппаратов по гидродинамическим каналам необходимо знать механизмы распространения и взаимодействия волн концентрации дисперсной фазы в двухфазном потоке. Успехи, достигнутые за последние годы в развитии континуальной модели движения дисперсных смесей, позволяют провести исследование волновых процессов в рамках этой модели, используя различные уровни приближения. [c.113]

    Зная механизм распространения волн концентрации дисперсной фазы, мы можем исследовать переходные процессы в затопленном колонном аппарате, которые связаны с поведением дисперсного потока. Отметим, однако, что дисперсный поток в аппарате не существует сам по себе . Для его организации и поддержания в пределах рабочей зоны аппарата необходима более или менее сложная система автоматического регулирования уровней поверхностей раздела фаз, которая в общем случае может оказывать существенное влияние на динамические характеристики аппарата. Исследование переходных процессов в такой системе выходит за рамки проблем, рассматриваемых в данной работе. Читателям, интересующимся этим вопросом, следует обратиться к специальной литературе [176]. [c.119]

    Сравнивая выражения для Сг и С2 в (2.179) с уравнениями характеристик (2.178) системы (2.176), нетрудно установить, что скорости волн с I VI с2 являются линеаризованными вариантами характеристических скоростей. В монографии Уоллиса [94] эти волны называются динамическими. Сопоставляя уравнение движения частиц в (2.177) и выражения для скоростей волн с, и в (2.179), нетрудно заметить, что эти волны, так же как и звуковые волны в газах, определяются взаимодействием инерции и квазиупругой силы сопротивления сжатию (растяжению), которая в данном случае возникает в связи с существованием дополнительного диффузионного потока частиц. С другой стороны, при мы получаем волновое уравнение [c.142]

    В работах по подводным взрывам [36] отмечается, что новые выходы на свободную поверхность ударной волны создают на ней бугорки, вырастающие в столбики высотой порядка 0,1 м, которые затем распадаются на отдельные капли, образуя купол брызг. Импульсная кавитационная прочность воды зависит от ее чистоты и длительности импульса [20, 2I, 27]. Для обычной воды, не подвергаемой кипячению и дистилляции, при длительности 0,2- 0,3 мкс величина Рк = 8 МПа, при длительности 1-10 мкс - Рк = 6,5-0,6 МПа, а для загрязнений воды -не более 0,1 МПа. По данным работы [37], вода выдерживает динамические растяжения в 0,25 МПа при длительности 20- 30 мкс с увеличением длительности до 150 мкс прочность уменьшается до 0,15 МПа, а затем спадает практически до статической при длительностях 300-500 мкс. Известно также, что кавитационная прочность при импульсном возбуждении ультразвука аналогично зависит от длительности, [13]. Указанными особенностями можно пользоваться для регулирования кавитационных процессов. [c.68]


    Остаточные деформации появляются уже в начальной стадии сжатия. Однако они уменьшаются при повторных нагрузках и могут быть сведены к нулю после многократной нагрузки и разгрузки. Одновременно возрастает модуль деформации в 1,2— 1,5 раза по сравнению с Е для недеформированного материала. Еще большую величину имеет динамический модуль упругости, определяемый по скорости распространения упругих волн. [c.14]

    Энергетический баланс установившегося динамического режима распространения фронта реакции (18), представляющий собой взаимно однозначное соответствие между 0 и , характеризует отличие процесса распространения в гетерогенных и гомогенных газовых пли конденсированных средах, в которых o((i)) = 1 (так как 7 = 0) и, значит, Q = T + Qx. В гетерогенных системах это условие выполняется только в случае стоячей волны, когда 0) = 0. Если же ю > О, то 0 > Гвх + Qx, а если и < О, то [c.32]

    С целью установки датчиков делали шурфы до наружной поверхности труб. В местах установки датчиков снимали гидроизоляцию, а поверхность труб зачищали наждачной бумагой. Для оптимизации расстановки датчиков поэтапно определяли особенности распространения волн и характеристики акустических шумов на участке коллектора низкого давления в штатном режиме работы агрегатов. На первом этапе использовали частотные фильтры системы на диапазон 30-200 кГц и соответствующие приемники. Уровень шумов при данном частотном диапазоне, приведенный к входу принимающего устройства, составил около 5000 мкВ (42 с1В относительно 1 мкВ). Столь высокий уровень шумов не позволял проводить измерение эмиссии в указанном частотном диапазоне, так как существенно снижался динамический диапазон системы. В связи с этим на втором этапе был использован диапазон 200-500 кГц, и уровень акустических шумов составил около 10 мкВ (20 с1В), что предпочтительнее при проведении акустических измерений. С помощью регистратора РАС-ЗА были записаны реализации шумов в частотных полосах 30-200 и 200-500 кГц, на основе которых получили частотный спектр шумов на объекте в суммарной полосе 30-500 кГц. Анализ спектра показал, что наиболее эффективным является использование полосы частот 100-500 кГц. [c.201]

    Эти качественные искажения входного сигнала легко объясня ются инерционными свойствами датчиков. Из сравнения рис. 3.4 и рис. 3.5. видно, что амплитуда вычисленных сигналов примерно оди накова, и это подтверждает незначительное затухание волны, давле ния в изучаемой суспензии. Когда амплитуда входного сигнала спада ет до уровня начального возмущения, датчики с динамического режима измерений выходят на статический режим. Из анализа вычисленной формы входного сигнала видно, что резонансные искажения во входном сигнале отсутствуют. Это подтверждает предположение о том, что эти искажения являются селективным резонансным усилением небольшого по амплитуде белого шума входного сигнала, возникающего в процессе распространения волны по среде и являющимся случайным. [c.119]

    Акустические методы интенсификации охватывают динамические воздействия на системы в виде упругих или квазиупругих колебаний и волн. Воздействия в зависимости от частоты относят к низко- или высокочастотным. В низкочастотном диапазоне, как правило, длина волны больше характерного размера системы или ее представительного структурного элемента А, > 1, а в высокочастотном — наоборот, >, < 1. В качестве условной границы диапазонов принято использовать частотный порог слышимости человеческого уха (15 — 16 кГц). Колебания ниже этого порога относят к звуковым и инфразвуковым, а выше — к ультразвуковым и гиперзвуковым. [c.7]

    Остановимся еще на одном примере корабля пе очень обтекаемой формы, который при своем движении порождает большие волны на поверхности воды. В этом случае сопротивление трения играет второстепенную роль по сравнению с волновым сопротивлением (затратой энергии на преодоление силы тяжести воды), и для обеспечения приближенного динамического подобия становится определяющим критерием число Фруда Fr = [c.81]

    Исключая отсюда с помощью (163) произведение скоростей, получим основное динамическое соотношение для прямой магнитогазодинамической ударной волны [c.235]

    Динамические методы капиллярных волн и колеблющейся струи мало пригодны для исследования растворов в равновесных условиях и сложны в экспериментальном исполнении. Поэтому их применяют лишь в особых случаях, например, при исследовании кинетики формирования поверхностных слоев чистых жидкостей в течение -весьма малых промежутков времени. В обычной же практике применяют статические методы, в отношении которых следует сделать некоторые общие замечания, необходимые для получения правильных результатов. [c.12]

    Как следует из уравнения (3.19), для увеличения разрешающей силы необходимо создать условия, обеспечивающие максимальную разность хода интерферирующих лучей. Такие условия, например, реализуются в устройстве, состоящем из двух полупрозрачных зеркал, параллельных друг другу. Этот прибор, названный эталоном Фабри-Перо , является основным прн изучении сверхтонкой структуры спектральных линий и широко используется во всем мире. Неудобство применения эталона Фабри-Перо заключается в том, что он может работать только в узком спектральном интервале длин волн и поэтому всегда должен использоваться в сочетании с более грубыми спектральными приборами, производящими предварительную монохрома-тизацию, т. е. выделение нужного узкого исследуемого участка спектра. Второй недостаток — узкий динамический диапазон измерений интенсивностей линий, что определяется поглощением света в пластинах или зеркальных покрытиях. [c.69]


    Динамические методы основаны на том, что некоторые виды механических воздействий на жидкость сопровождаются периодическими растяжениями и сжатиями ее поверхности, на которые влияет поверхностное натяжение. Этими методами определяется неравновесное значение а. К динамическим методам относятся методы капиллярных волн и колеблющейся струи. [c.21]

    В. Динамические методы позволяют определять лишь неравновесное (динамическое) поверхностное натяжение, причем в условиях, далеких от равновесия. К ним относится, например, метод колеблющейся струи. Он основан на том, что струя жидкости, вытекающая из трубки с эллиптическим сечением, под действием поверхностного натяжения приобретает колебательное движение, при котором по длине струи наблюдаются чередующиеся расширения и сжатия (стоячие волны). Длина стоячей волны связана определенной зависимостью с поверхностным натяжением. В этом случае динамическое поверхностное натяжение характеризует непрерывно обновляющуюся поверхность с временем жизни порядка нескольких миллисекунд. [c.89]

    При измерениях динамическими методами равновесное состояние границы раздела фаз не может быть достигнуто. К этой категории относятся методы вибрирующей струи и капиллярных волн. [c.34]

    Потоки горючего газа и воздуха, взятые в стихиомет]мческом соотношении, нагнетаются в камеру до полного ее заполнения, и затем подается электрическая искра. Динамическая волна продуктов сжигания газа вместе с последующей волной разрежения возбуждает колебания на поверхности отложений, разрушая последние. [c.34]

    Волны, описываемые уравнением (2.125), обычно называют кинематическими [173]. Уоллис [94] предложил называть их волнами непрерывности (сплошности). Оба названия взаимно дополняют друг друга и отражают наиболее характерные особенности этих волн. Второе название указывает на то, что волны переносят некоторое непрерывное распределение вещества или состояния среды. Первое название введено для того, чтобы показать, что эти волны не связаны с динамическими эффектами, т. е. не определяются взаимодействием сил, как, скажем, звуковые волны в газах или гравитационные волны на поверхности жвдкости. Начало использованию теории кинематических волн для анализа нe тaц oнapныx явлений в дисперсных двухфазных потоках было положено в работах [94, 140, 174]. Наблюдение кинематических волн в пузырьковых потоках проводилось в работе [175]. [c.116]

    Голографическая интерферометрия — высокочувствительный бесконтактный метод измерения перемещения поверхности детали или узла конструкции. Сущность его состоит в сравнении световых воли, отраженных поверхностью предмета в различных состояниях нагружения. Волны интерферируют и записываются голографически на специальной пленке, давая в зависимости от перемещения определенную картину полос. Этим методом можно исследовать динамические процессы, в частности вибрации. Для получения голограммы используют специальную оптическую схему, в состав которой входит лазер, как мощный источник когерентного освещения. [c.22]

    Упругое поведение является наиболее характерной реакцией вещества Земли на механические воздействия в широком интервале напряжений, температур и длительности действия сил. Высокая упругость пород коры и мантии при сжатии и сдвиге в динамическом режиме проявляется в распространении сейсмических волн, а при более длительных нагрузках —в чандлеровских колебаниях полюсов и земных приливах. Упругие свойства твердых тел полностью описываются набором независимых упругих констант, число которых определяется степенью анизотропии и для изотропных кристаллов или агрегатов равно двум. [c.85]

    Важным технологическим показателем является максимальная температура в слое катализатора. Оказалось, что колебания максимальной температуры в различных схемах незначительны. Максимальное значение температура достигает в схемах, где используются слои с переменными направлениями фильфации -например, схема / и ценфальная часть в схеме V. Обусловлено это динамическими забросами по температуре при переключении направления фильфации. Для схемы III, где тепловая волна в процессе движения по слою не изменяет своей формы, динамический заброс полностью исключен. Максимальная температура в этом случае будет несколько ниже. [c.330]

    Явление распространения бегущих волн значительно раньше, чем в гетерогенных каталитических реакторах, обнаружено п полнее исследовано в таких областях, как горение и биология. Результаты, составившие базу для развития всей последующей теории процессов распространения бегущих волн , содержатся в ставших уже классическими работах Я. Б. Зельдовича [9] и А. П. Колмогорова, И. Г. Петровского, Н. С. Пискунова [10]. Б настоящее время теория волновых процессов в горении и биологии развивается пптенснвно. Довольно полный обзор, посвященный современному состоянию математической теории таких процессов, содержится в [11]. Но использовать результаты этой теории для аналогичных процессов в гетерогенных каталитических реактораг не представляется возможным, так как динамические свойства неподвижного слоя катализатора в значительной мере определяются процессами межфазного тепло- и массообме-па, большим различием теплоемкостей твердой и газовой фаз, фильтрацией реакционной смеси через слой катализатора. Перечисленные факторы в своей совокупности не находят аналога в описании биологических структур или в горении, [c.27]

    После дифракции волны здание обтекается нестаци0на 1ным потоком газа, причем давление на поверхность равно давлению торможения потока, т. е. наступает "тормозное" воздействие (последующая фаза, которая длится до окончания действия ударной волны на здание). Время перехода к последующей фазе можно оценить как 3H/V, где Н - высота или ширина здания (наименьшая из этих величин), V - скорость распространения ударной волны. Задача проектировщика - оценить возможную (при разных сценариях протекания аварии - Ред.) протяженность фаз и рассчитать чувствительность (ответную реакцию) здания. Продолжительность воздействия нагрузок в результате взрыва парового облака достаточно велика и сравнима с динамической чувствительностью здания в отличие от случая взрыва конденсированного вещества, когда продолжительность воздействия нагрузок значительно меньше времени реакции здания (случай импульсной нагрузки). Часть работы [Allan, 1968] посвящена исследованию импульсной реакции (чувствительности) здания на воздействие ударных нагрузок от взрывов конденсированного вещества. [c.537]

    Энергетический баланс установившегося динамического режима распространения фронта реакции (3.436), представляющий собой взаимно однозначное соответствие между 0 и ю, характеризует отличие процесса распространения в гетерогенных и гомогенных газовых или конденсированных средах, в которых б(со)= 1 и, зна--чит, 0 = 00 + А бадЖ. В гетерогенных системах это условие выполняется только в случае стоячей волны, когда со = 0. Если же м > О, то 0 > 00 + АОадЗ , а если о)<0, то 0 < 0о + АбадЗ . Объясняется этот эффект тем, что вследствие большого различия теплоемкостей твердых и газовых фаз инерционность теплового поля гораздо больше инерционности концентрационного поля, что обусловливает возможность быстрой подачи непрореагировавшего компонента — теплового источника — в медленно перемещающееся тепловое поле. При движении фронта в направлении фильтрации газа максимальная температура выше адиабатической, так как в этом случае тепло, выносимое волной, складывается из адиабатического разогрева и тепла, отдаваемого слоем катализатора при его охлаждении. При движении фронта навстречу потоку газа, наоборот, часть тепла реакции расходуется на прогрев слоя катализатора, вследствие чего максимальная температура в зоне реакции ниже адиабатической. [c.84]

    В технологических процессах предприятий нефтепереработки широко исг1ользуют колонные аппараты, которые имеют значительнух) высоту (до 50м) и в связи с этим представляет интерес их поведение при ударно-импульсном нагружении взрывной волной. Анализ литературных данных позволил провести аналогию между ветровой (сейсмической) нагрузкой и воздействием ударной волны, поэтому с точки зрения взрыва, колонные ащ/араты можно представить как динамически нагруженную балку. [c.35]

    B. Статические и динамические свойства. Поскольку скорость зиука в металлах не бесконечна, мгновенное включение нагрузки вызывает сначала в материале лишь локальный отклик. Приложенное напряжение должно поддерживаться и течение времени, большего по сравнению со временем, необходимым для распространеЕшя волны напряжений по образцу и затухания колебаний, после юго только в идеальном упругом теле деформация становится стационарной. Если к упругому телу прилагаются импульсные или быстро меняющиеся напряжения, то образец следует разбить иа элементы, каждый из которых достаточно мал, чтобы напряжения и деформации в нем могли рассматриваться как одпсродпые. [c.197]

    В области термодинамической устойчивости алмаза его можно получать в виде алмазной пыли из углеродсодержапщх веществ во взрывной волне. Этот вариант сшггеза следует отнести к методу динамического погружения. [c.50]

    При изложении методов решения рассмотрены следующие вопросы 1) преобразование Лапласа — Карсона, принцип соответствия и его численная реализация 2) вычисление эффективных модулей 3) асимптотические методы механики композитов — метод гомогенизации и метод Бахвалова — Победри 4) метод осреднения в динамических задачах 5) эффекты дисперсии и затухания волн в полимерах и композитах 6) динамические эффекты, связанные с неоднородностью конструкций 7) вариационные постановки краевых и начально-краевых задач и их реализация по методу конечных элементов 8) принципы построения автоматизированной системы научных исследований (АСНИ) на базе метода конечных элементов 9) метод конечных разностей 10) метод характеристик и метод геометрической оптики для слабо неоднородных комнозитов. [c.6]

    Используем теперь тот факт, что к элементу среды, рассеченному фронтом волны, применимы общие теоремы динамики (в частности, теорема об измепеини количества двилсения). Следствием этих теорем будут условия, которые называются динамическими условиями на поверхности разрыва. [c.27]

    Но реальный сигнал, измеряемый датчиком, всегда отягощен погрешностями, возникающими за счет наличия различных волновых процессов в исследуемой среде и приводящими к возникновению различных шумов при распространении в ней ударной волны и передающихся на датчик из-за неидеальности развязки датчиков, индивидуальности каждого датчика, различий в установке, из-за деформаций корпуса и т. д. Хотя статическая погрешность показаний датчика в ударной трубе незначительна, на сигнале, вырабатываемом им, также сказываются индивидуальная особенность, вибрационные ускорения, температура среды, различные временные искажения, мультипликативные и аддитивные шумы [13]. Таким образом, кроме динамических искажений сигнала, поступающего на датчик, существуют еще случайные и систематические искажения при выработке сигнала самим датчиком. Но, обычно, последние невелики на фоне основного сигнала. Вьщеляются лишь так называемые резонансные искажения сигнала, что вполне закономерно, так как система измерения обычно представляет собой комбинацию колебательных систем [14]. Резонансные искажения носят случайный характер и могут не проявляться, если в сигнале нет частот, совпадающих с резонансными частотами измерительной системы (ИС). В процессе измерения ИС вьщает сигнал с суммарной погрешностью. [c.110]

    Шелудко, Платиканов и Манев (1965 г.) установили с помощью динамического метода измерения П наличие электромагнитного запаздывания для пленок бензола и хлорбензола и получили данные о длине лондоновской волны и К- [c.186]

    Поверхностное натяжение жидкостей легко определяют прямым экспериментальным путем. Описанные в литературе многочисленные методы измерения поверхностного натяжения на жидких (подвижных) поверхностях раздела подразделяют на три основные группы 1) статические (методы капиллярного по,анятия и лежачей или висячей капли) 2) полустатические [методы максимального давления пузырька (капли), отрыва кольца, отрыва пластинки, взвешивания или счета капель] 3) динамические (методы капиллярных волн, колеблющихся струй). [c.310]

    К пассивным методам АК относят акустико-эмиссионный метод (см. 2.7), в котором используют бегущие волны (рис. В.7). Явление акустической эмиссии (от лат. emissio — испускание, излучение) состоит в излучении упругих волн материалом ОК в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин, превращения кристаллической структуры, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с ОК преобразователи принимают упругие волны и позволяют установить наличие источника эмиссии, а при обработке сигналов, проходящих от нескольких преобразователей, — также расположение источника. [c.12]

    Акустико-эмисснонный метод — один из пассивных методов акустического контроля. Акустическая эмиссия (АЭ) заключается в генерации упругих волн напряжения в твердых телах в результате локальной динамической перестройки их структуры. Метод основан на анализе параметров этих волн. [c.171]


Смотреть страницы где упоминается термин Динамические волны: [c.48]    [c.133]    [c.159]    [c.35]    [c.98]    [c.89]    [c.360]    [c.382]    [c.28]    [c.33]    [c.93]   
Гидродинамика, массо и теплообмен в колонных аппаратах (1988) -- [ c.142 ]




ПОИСК







© 2024 chem21.info Реклама на сайте