Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы отражение от поверхносте

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]


    Золото — коррозионностойкий металл, не разрушается кислотами и щелочами и не окисляется даже при высокой температуре, в противоположность серебру не реагирует с сероводородом и другими серосодержащими соединениями, обладает хорошей тепло- и электропроводностью, не изменяющейся во времени даже в агрессивной среде. Полированная поверхность золота имеет высокий коэффициент отражения света. Недостатками чистого золота являются малая твердость и износостойкость. Для повышения физико-механических свойств золотые покрытия леги-, руют другими металлами. [c.424]

    Отражательная и поглощательная способность металла в очень сильной мере зависит от состояния его поверхности. Наличие оксидных пленок, пыли или шероховатостей может изменить не только абсолютную величину коэффициента отражения или поглощения металла, но и характер зависимости этих величин от длины волны падающего излучения А. и температуры Т. [c.24]

    Кривая функции распределения изображает профиль холма, образованного на плоской поверхности при конденсации паров металла в высоком вакууме. При этом имеется в виду, что конденсация не сопровождается отражением атомов от поверхности, а каждый ударившийся о поверхность атом остается на ней, что справедливо для большинства металлов. В случае, если бы имело место отражение или, точнее говоря, спонтанное испарение атомов металла с поверхности, то профиль распределения конденсата изменился бы за счет рассеяния конденсирующихся атомов. [c.126]

    Металлы непрозрачны — их гладкая поверхность отражает падающие на нее световые лучи. Отражательная способность металлов выражается в характерном металлическом блеске, интенсивность которого зависит от доли поглощаемого металлом света — чем она меньше, тем ярче блеск. Поглощение видимого света может происходить только в том случае, если в веществе существуют электроны, которые путем поглощения энергии могут быть подняты на высшие уровни таким образом, что частота (7) из известного уравнения —Е1 = Ь попадает в область частот видимого света. В бесцветных веществах для этого необходима в общем случае большая затрата энергии (соответствующая частотам ультрафиолетового света). Если металл поглощает лучи различных длин волн неодинаково, допустим коротковолновые лучи — в большей степени, то отраженный свет обогащается длинноволновыми лучами и, таким образом, металл приобретает желтую (Аи) или красную (Си) окраску. [c.71]


    Выбор угла наклона преобразователя для возбуждения поперечных и продольных волн определяется полнотой прозвучивания контролируемого объема, например, наплавленного металла сварного соединения. При этом следует учитывать возможность использования волн, отраженных от поверхности изделия противоположной поверхности ввода. Лучше всего применять в этом случае поперечные волны, падающие на отражающую поверхность под углом больше третьего критического, чтобы не возникала трансформация волн. [c.186]

    Поляризационные диаграммы, отображающие кинетику общего (кривая АА), анодного (кривая ВВ) и катодного (кривая ВБ) процессов на поверхности образца показаны на рис. 15. Кривая А А представляет собой регистрируемую гальваностатическую поляризационную диаграмму образца Фсо— его стационарный потенциал. В силу диффузионного ограничения катодной реакции кривая ББ зависимости г = (ф) на некотором интервале между равновесными потенциалами катодной и анодной реакции близка к прямой линии / = /пр. Отсюда участок экспериментального графика ГГ может рассматриваться как результат параллельного переноса влево на расстояние / р участка ВВ графика зависимости 1 = /а (ф). Выполним обратный перенос, т. е. перенесем начало отсчета плотности тока из точки О в точку 0 . Предполагаем, что участок ГГ кривой АА отображает кинетику анодного процесса на поверхности металла образца, тождественную кинетике металла на поверхности стальной трубы, которая будет уложена в грунт в данном месте, если линию ДД рассматривать как ось потенциалов. Построим частную катодную поляризационную диаграмму металла на поверхности трубы и ее зеркальное отражение относительно новой оси ф. Очевидно, на отмеченном выше интервале эта диаграмма (кривая КК) будет близка к линии РГ, параллельной ДД и отстоящей [c.84]

    Для изучения сплавов и их соединений широко применяется метод исследования микроструктуры отполированной и протравленной поверхности металла в отраженном свете. Этот метод введен в практику горным инженере], Н. П. Аносовым в 1831 году. Он позволяет выяснять, как зависит структура затвердевшего сплава от состава и от режима охлаждения, изучать связь между структурой сплава и его свойствами и сознательно искать пути получения сплавов с желательными свойствами. [c.411]

    Увеличенная теплоотдача в стенки приводит к перегреву двигателя и может вызвать местные разрушения поверхности камеры сгорания и днища поршня, первоначально выражающиеся в появлении на поверхности металла небольших щербин. Часто в первую очередь происходит разрушение кромок прокладки между цилиндром и головкой, завершающееся ее прогоранием. Характерно расположение таких разрушений во вполне определенных для данного двигателя местах, зависящих от конфигурации камеры сгорания, что связано с зонами преимущественного возникновения детонации и условиями отражения ударных волн от стенок. [c.172]

    Для исследования структуры кристаллов применяют также электронографию. Поскольку электроны задерживаются веществом значительно сильнее, чем рентгеновские лучи, при электронографическом изучении твердых тел исследуют прохождение электронов через очень тонкие слои вещества, или изучают дифракцию электронов при отражении их от поверхности. Последний метод ценен тем, что он дает возможность определять структуру тонких поверхностных слоев, например покрывающих металлы пленок оксидов, нитридов и других соединений. [c.154]

    Этот метод, разработанный Тронстадом [635], основан на том, что луч поляризованного света, отраженный ог металлической поверхности, изменяет поляризацию в зависимости от угла падения, оптических свойств металла, наличия поверхности пленки, а также и от окружающей среды. Определяя оптические свойства чистой металлической поверхности и поверхности, покрытой пленкой при сопоставимых условиях, можно узнать толщину пленки. Если луч монохроматического света, поляризованного в плоскости под углом, скажем, 45° к плоскости паде- [c.263]

    Оптические методы изучения поверхности электродов, находящихся в контакте с раствором, основаны на том, что свойства отраженного от поверхности электрода светового излучения зависят не только от диэлектрических свойств раствора и металла, но также от толщины и диэлектрических свойств адсорбционных или тонких фазовых пленок. Указанная зависимость может быть установлена решением при соответствующих условиях уравнений Максвелла, описывающих распространение электромагнитных колебаний. [c.80]

    Таким образом, для понимания механизма пассивации необходимо изучение закономерностей образования, роста и свойств окисных слоев. Для этого используют разнообразные электрохимические и оптические методы, например, отражение света, эллипсометрию, дифракцию электронов и др. Ю. Эванс разработал иодидный метод отделения пассивирующей пленки от металла, который основан на том, что раствор + К1 проникает через поры пленки к поверхности металла и растворяет его. Отделенный от металла тонкий пассивирующий слой может быть далее подвергнут электронно-микроскопическому исследованию. [c.382]


    Оптические методы изучения поверхности электродов, находящихся в контакте с раствором, основаны на том, что свойства отраженного от поверхности электрода света зависят От состояния поверхностной электронной плазмы металла, а также от толщины и диэлектрических свойств адсорбционных слоев. [c.181]

    Обычный источник помех при контроле сварных соединений— ложные сигналы от превышения проплавления и верхнего валика. Основные способы отстройки от них рассмотрены в п. 3.3.4. Дополнительно отметим, что различают несколько причин возникновения ложных сигналов от превышения проплавления, отстройку от которых ведут разными приемами. Возможно прямое отражение от превышения лучей как от вогнутой цилиндрической поверхности. Эхосигнал уменьшают, увеличивая угол ввода. Второй источник помех —дифракционное рассеяние в местах сопряжения превышения проплавления шва с основным металлом (ребра Е и /= на рис. 3.14, а). От них отстраиваются так же, увеличивая угол ввода и применяя амплитудную дискриминацию. Дифракция порождает поверхностные волны, распространяющиеся вдоль превышения и многократно отражающиеся от ребра. Эти ложные сигналы уменьшают, применяя раздельно совмещенный преобразователь с углом разворота 36° (угол между осями излучателя и приемника 72°). При этом поверхностные волны почти не попадают на приемник. [c.210]

    Принцип метода модуляционной спектроскопии отражения основан на том, что отражение света от поверхности металла связано с состоянием его поверхностной электронной плазмы. Последнее в свою очередь зависит от плотности заряда электрода q и от донорно-акцепторного взаимодействия частиц адсорбата с металлом. Таким образом, величина ARIR позволяет характеризовать как наличие на поверхности электрода молекул органического вещества, адсорбция которых изменяет q, так и наличие или отсутствие специфического, донорно-акцепторного взаимодействия адсорбированных молекул с поверхностью металла. Так, например, методом модуляционной спектроскопии отражения можно зафиксировать характерное для адсорбции ароматических и гетероциклических соединений я-электронное взаимодействие их с положительно заряженной поверхностью электрода (частичный переход л-электронов органической молекулы на уровни зоны проводимости металла). [c.34]

    Применение продольных волн накладывает ряд ограничений. Необходимо стробировать зону контроля, чтобы отстроиться от поперечных волн, возбуждаемых одновременно с продольными. Нельзя пользоваться однократно отраженным лучом для контроля верхней части шва, так как при отражении от нижней поверхности соединения продольные волны в значительной степени трансформируются в поперечные. Приходится зачищать верхний валик, чтобы проверить весь металл шва. По этой же причине для продольных волн слабо проявляется угловой эффект (см. п. 2.2.5), помогающий обнаруживать дефекты вблизи наружной и внутренней поверхностей. [c.213]

    ИССЛЕДОВАНИЕ МЕТОДОМ ИК-СПЕКТРОСКОПИИ ОТРАЖЕНИЯ-ПОГЛОЩЕНИЯ МОНО- И ПОЛИСЛОЕВ НА ПОВЕРХНОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ [c.148]

    Цель работы — освоение методики регистрации ИК-спектров отражения-поглощения слоев на поверхности металлов и определение с помощью данного метода состава естественных оксидных слоев на поверхности полированных алюминия и меди. [c.152]

    Важный вопрос, возникающий при исследовании эвтектических сплавов, заключается в числовой оценке размеров эвтектических областей. В принципе их можно было бы определить, используя методику рассеяния рентгеновского излучения под малыми углами. Однако в случае жидких металлов осуществить подобный эксперимент трудно. Дело в том, что для получения малоугловых рентгенограмм от жидких металлов съемку надо вести методом отражения монохроматического пучка рентгеновских лучей от свободной поверхности расплава. Однако получение дифракционной картины под малыми углами лимитируется областью геометрической тени образца, которая простирается до 5—8°. Дифракционную малоугловую картину от жидких металлов [c.191]

    Вторая полоса свидетельствует о дальнейшем окислении карбонильного углерода в карбоксильный. В газовой фазе органические кислоты не появляются, т. е. карбоксильная группа и енольная форма представляют собой тупиковые формы. Таким образом, каталитическое окисление произошло однократно и не сопровождалось освобождением соответствующего активного участка. При применении ИК-спектроскопии к изучению адсорбированного состояния необходимо подбирать адсорбенты и катализаторы, достаточно прозрачные в исследуемой области спектра. Окисные адсорбенты сами пропускают излучение в области 4000—1200 см . Металлы в виде сплошных напыленных пленок почти полностью отражают, а металлические черни с частицами малых размеров почти полностью поглощают излучение. Частичное преодоление этих трудностей возможно при помощи отраженных инфракрасных спектров. Более перспективна методика нанесения частиц металла очень малых размеров на тонко измельченный прозрачный носитель типа силикагеля или окиси алюминия с достаточно развитой поверхностью. [c.178]

    Блеск металлической поверхности зависит от степени ее гладкости последняя определяется размерами, формой и расположением элементарных частиц, образующих поверхность металла. В отношении электролитических осадков высказываются различные и зачастую противоречивые взгляды на то, что считать определяющим для их блеска — размер кристаллов осадка или их ориентацию в каком-либо определенном направлении, которое вызывает преимущественное отражение света. [c.137]

    Будучи общими всем металлам, перечисленные свойства проявляются у них в неодинаковой степени. Так, металлический блеск наиболее ярко проявляется у серебра оно и применяется в производстве зеркал. Смотрясь в зеркало, мы видим свое отражение от тончайшего слоя серебра, нанесенного на заднюю поверхность стеклянной пластинки. [c.122]

    Для металлических тел с гладкой поверхностью характерен м е-таллический блеск — результат отражения световых лучей. В мелкораздробленном состоянии многие металлы (железо, платина и др.) теряют блеск, приобретают черную или серую окраску порошкообразные алюминий и магний сохраняют блеск. Интенсивность блеска зависит от доли поглощаемого веществом света чем меньше света поглощает металл, тем ярче его блеск. Серебро и палладий, отличающиеся 1[аиболее интенсивным блеском, используют для изготовления зеркал. [c.256]

    Работа Пикеринга и Экстрома оставляет некоторую неопределенность относительно степени необходимой чувствительности для обнаружения с помощью спектров отражения слоев, хемосорбированных на образцах компактного металла. Повышенная поверхность полученных пленок (в общей сложности 2,6—7,8 м ) показывает, что они были пористыми. Следовательно, нужно принять во внимание увеличение интенсивности полос за счет прохождения света через несколько одиночных слоев при каждом отражении. Однако это преимущество не может быть учтено при изучении молекул, хемосорбированных на поверхности компактных образцов. [c.98]

    Сплошность сцепления. На заводах-изготовителях для контроля качества гомогенной освинцовки используют переносные и стационарные рентгеновские установки. Контроль осуществляют как на стадии нанесения гомогенной освинцовки на поверхность стального листа, так и покрытия аппарата. Контроль проводят выборочно (отдельных участков) или всей поверхности. В условиях монтажной площадки для контроля сплощности сцепления щироко используют ультразвуковой метод. Его часто применяют также для определения толщины покрытия. Испытания проводят как импульсными, так и резонансными дефектоскопами. Сигналы фиксируются ло шкале прибора или на слух с использованием наушников. При хорошем сцеплении не происходит отражения сигналов от поверхности раздела сталь — свинец. Наличие сильных сигналов показывает на полное отсутствие связи обычно это имеет место, если площадь отслоения превышает размер головки прибора. При меньших размерах дефектов поступают слабые сигналы. Контур отслоения покрытия легко выявляется с помощью прибора. Испытания проводят с наружной стороны корпуса. Поверхность должна быть чистой от сварочных брызг, окалины, глубоких пор, трещин и других дефектов. Для обеспечения акустического контакта между искательной головкой и металлом его поверхность тщательно протирают ветошью и на нее наносят слой масла или вазелина. [c.279]

    Рассеяние электронов от поверхности выше всюду предполагалось диффузионным. В полуметаллах оно может быть близким к зеркальному (вследствие большой дебройлевской длины волны). Это приводит [58] к линейной зависимости сопротивления от магнитного поля — закону Капицы. В хороших металлах отражение близко к зеркальному для электронов, сталкивающихся с поверхностью под малыми углами ( 7). В результате появляется возможность определить по зависимости сопротивления от магнитного поля зависимость коэффициента отражения электронов от угла падения. [c.260]

    Теперь об эксперименте Дэвиссона и Джермера, Поначалу Дэвиссон искал. .. электронные оболочки атомов, а точнее, изучая отражение электронов от твердых тел, он стремился прощупать конфигурацию электрического поля, окружающего отдельный атом. В 1923 г. совместно со своим учеником Г. Канс-маном он получил кривые распределения рассеянных электронов по углам в зависимости от скорости первоначального (нерассеянного) пучка. Схема опыта показана на рис. 4. В этой установке можно было изменять энергию первичного пучка, угол падения на мишень (поверхность металла) и положение детектора. Согласно классической физике рассеянные электроны должны вылетать во всех направлениях, причем их интенсивность мало зависит от угла рассеяния и еще меньше — от энергии первичного пучка. Почти так и получалось в опытах Дэвиссона и Кансмана. Почти., ., но небольшие максимумы на кривых распределения электронов по углам в зависимости от энергии нерассеянного пучка все-таки были. Исследователи приписали их неоднородности электрических полей около атомов мишени. [c.21]

    Отраженная энергия снова поглощается и переотражается ограничивающими поверхностями и т. д. Поверхности шлака и металла излучают собственную энергию, которая поглощается и переотражается этими поверхностями. [c.62]

    Полирование —щопесс удаления с поверхности изделий малейших неровностей и сообщения ей блестящего, зеркального вида с высоким коэффициентом отражения света. Полирование производится на станках кругами и во вращающихся барабанах как перед покрытием поверхности металлом, так и после него, например после меднения, никелирования, хромирования. Полирование покрытий из мягких и дорогих металлов (серебро, золото) производится специальными ручными полировальниками.- [c.367]

    Среди дисперсных систем коллоидные растворы занимают промежуточное положение между суспензиями и истинными растворами диаметр распределенных частичек в жидкой фазе коллоидного раствора колеблется от 1 до 100 ммк. Коллоидные растворы могут быть получены двумя различными- методами дисперсионным (уменьшением величины частиц более грубых дисперсных систем) и конденсационным (увеличением величины частиц истинных растворов, обладающих молекулярной или ионной дисперсией вещества). Коллоидные растворы называются также золями. В отличие от истинных растворов коллоидные растворы являются оптически неоднородными системами, так как световые лучи в них подвергаются светорассеянию этим объясняется опалесценция коллоидных растворов (различные окраски в отраженном и проходящем свете), что служит отличительным признаком коллоидных систем. Так как величина частиц коллоидного раствора одного и того же вещества колеблется в широких пределах, то окраска этих растворов может быть различной. Для коллоидных растворов характерны все явления, происходящие на поверхности раздела двух фаз, особенно процесс поглощения различных веществ на поверхности (адсорбция). Одним из продуктов адсорбции из растворов могут быть молекулы растворителя, в частности воды. Коллоидные системы, в которых частички неспособны взаимодействовать с дисперсионной средой (в частности, с водой), а следовательно, и не могут в ней растворяться, называются лиофобными (гидрофобными). Например, к гидрофобным коллоидам относятся коллоидные металлы, сульфиды. Лиофильные коллоиды характеризуются тем, что дисперсная фаза взаимодействует с дисперсионной средой и способна в ней растворяться. Если дисперсионной средой служит вода, коллоиды называются гидрофильными (например, желатин, клей и др.). Частички коллоидного раствора, помимо молекул воды, могут адсорбировать на своей поверхности ионьь [c.244]

    Лейтц-ортолюкс (ФРГ)— универсальный микроскоп для исследования в проходящем и (или) отраженном свете. В проходящем свете определения ведут в светлом и темном поле, при фазовом и интерференционном контрасте, при флуоресценции осуществляют микрофотографирование. В отраженном свете с помощью иллюминатора изучают поверхности непрозрачных объектов. Имеется опакиллюмннатор для просмотра ровных и полированных аншлифов (металла, руд, керамики и др.). [c.112]

    Особый интерес представляет эллипсометрический метод, который позволяет исследовать состояние поверхности металла непосредственно при измерении потенциостатических поляризационных кривых. Этот метод был предложен в 1933 г. Л. Тронстадом и детально развит в работах Дж. Бокриса, Е. Егера и др. Принцип метода состоит в определении относительного запаздывания по фазе и относительного уменьшения амплитуды компонентов эллиптически поляризованного света при отражении от поверхности исследуемого электрода. Из этих [c.382]

    Согласно представлениям физической оптики тонких слоев, при отражении световой волны от поверхности металла вследствие комбинированной падающей и отраженной волн наблюдается электромагнитная волна, которая в плоскости исследуемого слоя при нормальном падении света и при (й — толщина слоя, К — длина волны) в первом приближении имеет узел, т. е. равную нулю амплитуду, и, следовательно, незначительно взаимодействует со слоем. При наклонных углах падения для излучения, поляризованного перпендикулярно плоскости падения (х-компонента), изменение фазы световой волны при отражении также будет равно 180°, и взаимодействие наблюдаться не будет. Если же волна поляризована параллельно плоскости падения (р-компонснта), картина отражения меняется, поскольку изменение фазы отлично от 180°, и комбинация падающей и отрал<енной волн даст на поверхности стоячую волну с вектором электрического поля, отличным от 0. [c.149]

    Для понимания механизма ингибиторного действия по отношению к кислотной коррозии нашел применение электрохимический метод, основанный на данных поляризационных измерений. Введение ингибитора в раствор может привести к задержке скорости катодного процесса разряда ионов водорода на поверхности металла. В случае введения другого ингибитора торможению подвергается анодная стадия ионизации.металла. Очень часто действие ингибитора одновременно направляется на обе стадии коррозионного процесса. Все эти изменения находят отражение на поляризационных кривых, наклон которых становится тем более крутым, чем выше эффективность действия ингибитора (рис. 142). Пунктиром на этом рисунке показаны кривые катодной и гиюдной поляризации в полулогарифмических координатах ля чистого иеингибированного раствора кислоты. Экстраполирован-пап точка пересечения начальных линейных отрезков этих кривых соответствует скорости саморастворения металла в таком растворе (на рис. 141 эт а величина обозначается г ). Ей соответствует стационарный потенциал коррозии Е . Сплошными линиями на рисунке показаны поляризационные кривые, относящиеся к ингибированному раствору. Абсцисса точки пересечения обеих кривых помтрежнему определяет скорость саморастворения металла с, но на этот раз в присутствии ингибитора в растворе. [c.260]

    Можно доказать существование таких зон многими способами. Мы рассмотрим два из них. На примерах иона молекулы водорода и молекулы водорода мы видели, что наличие двух собственных функций, отвечающих одной энергии, приводит к расщеплению энергии на два терма. Подобная ситуация возникает в металлах. Известно, что кристаллическая решетка приводит к отражению падающей волны, если соблюдены условия Брегга. Для волны, падающей перпендикулярно к поверхности решетки, эти условия, как известно, запишутся следующим образом  [c.350]

    Рассмотрим плоскую волну, падающую в пустоте нормально на поверхность металла, принимаемую нами за плоскость уг (рис. 168). Падая на металлическую поверхность, волна распадается на отраженную волну, распространяющуюся в пустоте по направлению отрицательной оси х, и на волну, проникающую в металл. Максвелловы уравнения для однородных сред будут удовлетворены выражениями  [c.401]


Смотреть страницы где упоминается термин Металлы отражение от поверхносте: [c.90]    [c.63]    [c.523]    [c.304]    [c.464]    [c.101]    [c.131]    [c.149]    [c.154]    [c.188]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.55 , c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность металла



© 2025 chem21.info Реклама на сайте