Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная активность сред электролитов

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Двухэлектродный зонд имеет герметичный корпус из нержавеющей стали, к торцу которого крепятся два стальных электрода в виде стержней. При работе он погружается в коррозионную среду -электролит. На оба электрода подается слабый постоянный ток, создающий на их поверхности небольшое повышение анодной и катодной активности. При этом через электролит протекает небольшой ток, характеризующий величину мгновенной коррозии. Величина потенциалов (помимо приложенного), измеренных на электродах зонда, служит для оценки склонности к образованию язв на поверхности электродов в электролите. [c.37]

    В отличие ОТ усталостных, коррозионно-усталостные трещины обычно возникают в самом начале циклического нагружения, и мелкозернистая зона поверхности излома имеет более темную окраску и обычно покрыта продуктами коррозии. Процесс коррозионно-усталостного разрушения металла облегчается адсорбционным понижением прочности и расклинивающим эффектом поверхностно-активными компонентами внешней среды. В кислых средах поверхностно-активным веществом служит водород, который, адсорбируясь на вершине трещины, уменьшает поверхностную энергию атомов металла, находящихся под действием растягивающих сил. Наличие в электролите растворенного сероводорода [c.122]

    Анионы, присутствующие в электролите, могут существенно иять на кинетику растворения металлов не только в активном, и в пассивном состоянии и в процессе пассивации. Анионы и моле-лы коррозионных сред адсорбируются на поверхности электрода могут образовывать комплексы с атомами или ионами металла их окислов, расположенными на поверхности. Прочность связи реакционная способность таких комплексов оказывают существен-е влияние на тип процесса растворения и его скорость [90К [c.29]

    Для того чтобы выявить специфическое влияние анионов, входящих в состав ингибиторов, защищающих металл благодаря образованию труднорастворимых соединений, изучали в их присутствии анодное поведение стали в буферном электролите при постоянном значении pH. Таким образом исключалось возможное влияние pH при введении этих щелочных ингибиторов в коррозионную среду (рис. 2,16). Как нетрудно заметить, при одинаковом значении pH и одинаковой мольной концентрации фосфата и силиката. их влияние на анодное растворение стали различно фосфат переводит сталь в пассивное состояние, а в присутствии силиката сталь остается в широкой области потенциалов в активном состоянии. Эти результаты иллюстрируют специфическое влияние анионов и указывают на то, что действие ингибиторов щелочного характера обусловлено не только изменением pH. [c.49]


    Если происходит пассивация электрода (такой механизм действия ингибиторов в нейтральных средах встречается чаще всего и является наиболее эффективным), то из-за сокращения активной поверхности электрода общая коррозия всегда уменьшается. Однако из этого совсем не следует, что интенсивность коррозии также падает. Все зависит от того, что уменьшается в большей степени — общая коррозия или активная часть электрода. Если степень покрытия электрода 0 пассивирующим окислом выше степени уменьшения суммарного коррозионного эффекта I, то интенсивность коррозии I должна возрасти. Степень уменьшения силы тока зависит не только от 0, но и от характера контроля скорости коррозионного процесса и поляризационных характеристик системы металл — электролит при протекании в ней катодной и анодной реакций. [c.89]

    Электрохимическая коррозия возникает при действии на контактирующие разнородные металлы электролитов, т. е. жидкостей, проводящих электрический ток, например растворов, солей, кислот и щелочей. Электрохимическая коррозия протекает не только при погружении в электролит металла, но и при хранении его в атмосферных условиях. На поверхности металлических изделий часто имеется тонкая и незаметная вооруженным глазом пленка воды (влаги). В пленке воды растворяются газы (хлористый водород, оксиды серы, азота и др.), находящиеся в атмосфере. Газы образуют с влагой на поверхности изделий соответствующие кислоты (серную или сернистую, соляную, азотную или азотистую и др.). Таким образом создаются условия для возникновения электрохимической коррозии. Коррозионная активность атмосферы зависит от степени загрязнения ее различными веществами. Так, в сельской местности алюминий коррозиирует в 100 раз медленнее, чем в промышленных районах, где загрязненность атмосферы пылью, особенно оксидом углерода, соединениями серы, оксидом азота, частицами угля, золы и другими веществами, значительно выше. Эти вещества образуют с влагой воздуха агрессивные среды, в которых металлические изделия из стали, изделия из дерева, кожи, ткани и других материалов разрушаются быстрее. Значительное влияние на коррозионную активность атмосферы оказывает также температура с повышением ее коррозия металлов усиливается. [c.6]

    Грунты представляют собой капиллярно-пористую среду с явно выраженной структурной неоднородностью и состоят из твердой и жидкой фаз. Грунтовая влага, являясь растворителем, содержит в себе газы воздуха, растворенную углекислоту и ионы водорода. Из твердой фазы в грунтовой раствор переходят ионы Са", Ка, СОз, 804, СГ. В меньших количествах в грунтовом растворе содержатся ионы Ы, К , Ге", Ге , АГ", Мп", 2п", Си", а также различные органические соединения (растворенные и взвешенные), коллоидные растворы и грубые взвеси минеральных веществ. Грунтовый раствор образует электропроводящую среду — грунтовый (почвенный) электролит, являющийся активным звеном электрохимических коррозионных процессов. [c.6]

    На основании изложенного можно сделать вывод первичным процессом при действии многих эффективных ингибиторов является образование на поверхности металла защитной пленки, представляющей собой продукт реакции между металлом, ингибитором и ионами коррозионно-активной среды. В этом случае все электрохимические процессы катодная и анодная поляризация, изменение перенапряжения водорода, сопротивления на границе фаз металл--электролит и др., обусловлены протеканием реакции образования защитной пленки, т. е, являются вторичныл процессами. [c.69]

    Добавление оксида цинка в хроматные пигменты целесообразно также в связи со стабилизацией коррозионной среды. В промышленной атмосфере, содержащей диоксид серы в больших концентрациях, конденсирующиеся на поверхности слои электролита обладают кислой реакцией. Проникая через лакокрасочные пленки, кислый электролит может способствовать восстановлению шестивалентного хрома и, следовательно, деполяризации катодного процесса. Введение в пассивирующую грунтовку основного пигмента будет препятствовать подкисле-нию среды, что предотвратит возможность участия хромата в катодном процессе. В этих условиях будут проявляться лишь тормозящие действия хромата по отношению к анодному процессу, т. е. его пассивирующие свойства. Таково поведение стали, магниевого сплава и дуралюмина в водных вытяжках хроматных пигментов, образующихся при проникновении через лакокрасочный слой воды и других коррозионно-активных агентов. [c.134]


    В растворах электролитов, содержащих другие ионы, возможность их участия в процессе восстановления также подчиняется рассмотренным выше законам электрохимической кинетики. Предельная коррозионная активность основных ионов соответствует стандартному потенциалу восстановления. Достаточно полное представление об электродных реакциях (процессах коррозии) во всех известных искусственных и природных средах может быть дано на основании рассмотрения Ео восстановления молекул и ионов концентрированных и малодиссоциирован-ных кислот, кислотных остатков, высокодиссоциирован-ных кислот и солей, а такл<е окислительных реакций за счет растворенных в электролите газов. [c.32]

    Исходя из положения алюминия в электрохимическом ряду, можно было бы ожидать, что он будет защищать сталь в местах несплошностей более эффективно и на более обширной площади, чем цинк. Однако алюминий с окисной пленкой более электроположителен, чем цинк, и, таким образом, хотя напыленный алюминий и будет защищать сталь за счет собственного растворения, его действие в этом отношении не будет столь эффективным, как защитное действие цинка. Таким образом, электролит, прошедший через напыленное алюминиевое покрытие в первые часы после его нанесения, вызовет коррозию с образованием нерастворимых продуктов, которые полностью закупоривают поры в алюминии, и поэтому после небольшого отрезка времени алюминиевое покрытие становится абсолютно непроницаемым для влаги. В случае механического нарушения покрытия этот механизм самозалечивания дополняется защитным действием алюминия за счет его анодного растворения. В результате образуются нерастворимые продукты коррозии, и место нарушения в покрытии тотчас же залечивается. Алюминий не дает больших по объему продуктов коррозии и поэтому слой краски, покрывающий напыленное покрытие, не вспучивается. Алюминиевые покрытия на стали, полученные методом распыления, экспонировали более 20 лет в очень суровых атмосферных условиях (Конгелла) и показали прекрасные защитные свойства. Единственным результатом такой длительной выдержки было появление небольшого числа маленьких бугорков окисла алюминия, которые, по-видимому, не могут явиться центрами коррозии в будущем. Алюминиевые покрытия чрезвычайно привлекательны тем, что обеспечивают защиту как в условиях погружения, так и в атмосферных условиях, но наиболее ценной является их стойкость в коррозионно активных электролитах, обладающих и высокой электропроводностью. Алюминиевые напыленные покрытия дают хорошие результаты в морской воде и обладают прекрасной стойкостью в сернистых атмосферах, однако в средах, содержащих серу и хлор, растворимость продуктов коррозии алюминия, повидимому, повышается, и поэтому для защиты от коррозии в таких комбинированных средах предпочтение отдают цинковому покрытию. Если свеженапыленное на сталь алюминиевое покрытие экспонируется в течение нескольких часов в чистой воде, то оно иногда покрывается бурыми пятнами, что обусловлено катодным действием алюминия на сталь в эти первые несколько часов, По-видимому, такое действие связано с наличием в покрытии окисных слоев. Очень небольшое количество железа корродирует (растворяется) в течение начального периода выдержки, но затем алюминий начинает действовать как обычно, т. е. как анод. Образующиеся нерастворимые окислы [c.382]

    Быстрое сравнение коррозионной стойкости металлов и коррозионной активности разных сред (водных растворов электролитов, грунтов, расплавов) можно провести электрохимическим методом с использованием поляризационных кривых, полученных упрощенным методом. При этом методе измеряют силу тока (а по ней рассчитывают плотность тока) и разность потенциалов между двумя одинаковыми электродами из одного и того же материала, помещенными в электролит и поляризуемыми от внещнего источника постоянного тока (рис. 224). О скорости коррозии металлов можно судить по виду полученных поляризационных кривых АУ=1 1). Омическое падение потенциала и поляризационный сдвиг потенциалов АУр=ДУа+Д к определяют измерением омического сопротивления исследуемой системы внутр с помощью мостика переменного тока, так как Д = анутр а Д р = А К - А [c.391]

    Если принять, что вследствие кинетического тормсжения электрохимических процессов скорость окисления металла нод адсорбционной пленкой влаги без анодного активатора несравнимо меньше скорости диффузии влаги через защитную пленку (т. е. не вся влага, проникающая через пленку, реализуется на кор])озионные процессы), то для достаточно большого времени (/ оо) толщина адсорбционной плен ги влагн на поверхности металла становится функцией активности воды в коррозионной среде (т. е, относительной влажности воздуха или активности воды в электролите). Другими словами, вследствие конечной величины влагопроницаемости полимерной пленки и относительно небольшой его толщины в результате диффузии влаги устанавливается адсорбционное равновесие поверхности металла с внешней средой. С этой точки зрения естественно было бы ожидать ощутимую скорость коррозии металла под защитными полимерными пленками. Однако в действительности, как показывают эксперименты, не наблюдается однозначной зависимости скорости окисления металла под пленкой от влалаюстп среды или коэффициента влагопроницаемости, так как лимитирующие стадии коррозионного процесса зависят как от внешних, т к и от внутренних факторов. [c.40]

    На рис. 1.15 дана анодная кривая АВСО, определенная потенциостати-чески для системы металл— среда, которая подвергается изменению в точке В. По мере того как потенциал становится более положительным, плотность тока возрастает в активной области АВ и достигает критической величины (критической плотности тока г кр), при которой скорость коррозии внезапно падает благодаря образованию защитной окисной пленки на поверхности металла. В этом случае говорят, что металл пассивен и скорость его коррозии, которая зависит от окисной пленки, значительно меньше, чем в активных условиях. Пассивное состояние определяется также окислительно-восстановительным потенциалом раствора и кинетикой катодной реакции. Линия ПК описывает восстановление ионов Н+ на катоде, когда металл активно корродирует в кислоте. Скорость коррозии и коррозионный потенциал определяются пересечением этой линии и анодной кривой в точке 7. В электролите с высоким окислительно-восстановительным потенциалом, который получают насыщением восстановительной кислоты кислородом или добавлением таких окис- [c.39]

    Следует сразу же оговориться, что истолкование механизма разрушения сплавов в нейтральных электролитах за счет водородной хрупкости встречается со значительными трудностями. Без специальных допущений нельзя понять, почему стали способны из нейтральных электролитов вытеснять водород в стационарных условиях. Потенциал большинства высокопрочных сплавов, а легированных (нержавеющих) тем более, намного положительнее потенциала водородного электрода. Поэтому коррозионный процесс не может протекать с водородной деполяризацией. Правда известно, что для обычных нелегированных сталей доля водородной деполяризации составляет около 2%. Однако этого количества водорода едва ли достаточно, чтобы вызвать водородную хрупкость, а для более благородных сплавов, как уже указывалось, водородной деполяризации вообще не следует ожидать. Чтобы обойти эти трудности, делается ряд допущений. В частности, одно из них заключается в том, что, поскольку анодный процесс протекает в вершине трещины на весьма ограниченной площади и к тому же сильно ускоряется при деформации, то это может привести к заметному подкислению среды в щели. Другое возможное объяснение исходит [58, 59] из того, что коррозионная трещина берет обычно свое начало от питтинга, в котором, как известно, коррозионная среда более кислая, чем остальной электролит. Наконец следует упомянуть и о другой, по-видимому, более вероятной возможности протекания процесса за счет водородной деполяризации. Следует иметь в виду, что в процессе развития трещины все время открываются новые свежие участки металла, не покрытые окисными пленками. Такая ювенильная поверхность обладает более отрицательным потенциалом и она может свободно вытеснять водород и из нейтральных электролитов. Этот механизм, как нетрудно заметить, может объяснить быстрый рост трещины и разрушение сплава. Однако водородная хрупкость здесь является вторичным процессом, а не первичным. Для того, чтобы трещина начала развиваться, нужны какие-то другие причины. Точно так же для подкисления металла в щели или в ииттинге необходимо, чтобы начал развиваться активный анодный процесс. Таким образом водородная хрупкость является лишь следствием возникновения в щели активного анодного процесса, а не первопричиной разрушения сплавов. Что же инициирует вначале анодный процесс, пока не ясно. [c.125]

    Существенным недостатком хромоникелевых, так же как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния точечной коррозии (в средах, в которых наряду с пассиваторами присутствуют активные ионы, например С1 ), коррозионному растрескиванию (в условиях коррозии при наличии растягивающих напряжений и в присутствии стимуляторов растрескивания сталей в электролите — NaOH, хлоридов совместно с кислородом и др.) и межкристаллитной коррозии (когда границы зерен обладают наиболее отрицательным потенциалом и являются активными, мало поляризующимися анодами). Межкристаллитная коррозия хромоникелевых сталей особенно опасна тем, что, не изменяя часто внешнего вида металлической конструкции, ведет к быстрой потере металлом прочности и пластичности. [c.272]


Смотреть страницы где упоминается термин Коррозионная активность сред электролитов: [c.190]    [c.57]    [c.122]    [c.31]    [c.158]    [c.27]   
Коррозионная стойкость материалов Издание 2 (1975) -- [ c.17 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Активность среды

Активность электролитов

Коррозионная pH среды



© 2025 chem21.info Реклама на сайте