Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серный ангидрид образование

    Как уже было показано в предыдущем разделе, сильное образование сульфона наблюдается при взаимодействии свободного серного ангидрида с некоторыми углеводородами (типа бензола или толуола), хотя с другими соединениями (как додецилбензол) образование сульфона почти не идет. Поэтому в реакции образования сульфона взаимодействием с серным ангидридом полистирол, по-видимому, скорее напоминает второй тип углеводорода, чем первый, [c.539]


    Более быстрое сульфирование антрахинона можно осуществить серным ангидридом для избежания образования дисульфокислот реакцию проводят при большом избытке антрахинона. [c.318]

    Многочисленные анализы выхлопных газов показывают, что обнаруживаемое в них количество 50д в значительной мере зависит от места и способа отбора пробы газа. Очевидно, обращение низшего окисла в высший может происходить не только под действием металла стенок камеры сгорания, но и на всем пути газов до места отбора пробы. В связи с этим определение соотношения 50а и 50з в пробе газа не дает полного представления о действительных масштабах образования серного ангидрида [44]. [c.302]

    Воздух, пройдя компрессию до 5 атм и охладившись в теплообменниках, поступает в сушильную башню, где освобождается от влаги. После подогрева он поступает в печь для сжигания серы. На выходе из печи объемная доля сернистого ангидрида составляет 12%. Пройдя котел-утилизатор, в котором генерируется перегретый пар Р = 40 атм), газ охлаждается и последовательно проходит три слоя контактной массы (между слоями газ охлаждается в теплообменниках). После охлаждения до 200° С газ поступает на промежуточную абсорбцию, где отводится основное количество сернистого ангидрида, что способствует смещению равновесия реакции окисления сернистого ангидрида в сторону образования серного ангидрида. После подогрева газ поступает еще на один слой катализатора, после чего идет на окончательную абсорбцию и затем на возвратную турбину газотурбинной установки. [c.609]

    Исследовалась возможность замены олеума серным ангидридом [35, с. 39]. В первом промышленном процессе такого типа серный ангидрид применяли в виде паров, разбавленных воздухом. Сейчас этот парофазный процесс проводят в больших масштабах. Преимущества использования серного ангидрида следующие малый расход сульфирующего агента, меньшая продолжительность процесса, минимальное образование кислого гудрона, высокий выход сульфоната и низкое содержание кислоты в кислом гудроне. [c.70]

    Сама химическая реакция протекает практически мгновенно н при взаимодействии с газообразным серным ангидридом лимитируется его диффузией, завершаясь в пограничной пленке жидкой фазы. Это ввиду высокой экзотермичности реакции способствует местным перегревам и образованию побочных продуктов (олефины, карбонильные соединения, смолы), которые вызывают потемнение и ухудшение качества ПАВ. Поэтому важное значение имеет способ проведения реакции, обеспечивающий отвод тепла и устранение местных перегревов с надежным регулированием температурного режима (разбавление 50з инертным газом, интенсивное перемешивание, проведение реакцни в пленке). [c.320]


    При этом анализе непредельны(з поглощаются бромной водой или олеумом, т. е. серной кислотой, содержащей избыток серного ангидрида. При поглощении бромной водой происходит присоединение брома по месту двойной или тройной связи углеводорода с образованием соответствующих дибромидов и тетрабромидов по уравнениям [c.830]

    Герике [12] и Кекуле [13] нашли, что дифенилсульфон превращается при действии серной кислоты в бензолсульфокислоту и поэтому, подобно сульфированию, образование сульфона является обратимой реакцией. В технике достигают превращения в бензолсульфокислоту выше 80% взятой серной кислоты. Этот метод сульфирования применим и к другим летучим углеводородам, например к толуолу и ксилолам. В случае высококипящих веществ можно удалять образующуюся воду посредством вспомогательной не реагирующей с серной кислотой жидкости [14] (нанример, четыреххлористого углерода) или инертного газа (например, углекислоты). Если сульфируемое вещество, например бензолсульфокислота, нелетуче, реакцию можно провести под уменьшенным давлением [15], с тем чтобы вода отгонялась. Другим методом поддержания концентрации серной кислоты на достаточном уровне для продолжения хода реакции является пропускание в реакционную смесь серного ангидрида, связывающего воду по мере ее образования [16а]. Сульфирование ускоряется в присутствии фтористого бора [16в] и фтористого водорода [16г]. Выделить бензолсульфокислоту из реакционной смеси можно путем непрерывной экстракции ее бензолом [166]. [c.11]

    Эти соединения значительно реакционноспособнее, чем S0 д-комплекс пиридина, известный с 1886 г. [4, 40]. Микаель и Вайнер [24] предполагают, что при образовании ангидрида этионовой кислоты из серного ангидрида и этилена реакция идет между SgOg и этиленом. Однако, так как комплекс диоксана и SOg 1гостроен, как указано выше, то образование соединения типа ангидрида этионовой кислоты из этого комплекса не может идти через S Og, а только через SOg. [c.350]

    Обычно небольшое количество дисульфокислоты образуется при сульфировании бензола с 70 %-ной кислотой при высокой температуре — около 250° [5]. В отношении сравнительной легкости образования моно-и полисульфокислот алкилбензолы напоминают бензол. Образование дисульфокислот упоминается как побочная реакция при сульфировании додецилтолуола серным ангидридом с целью получейия моющих средств. [c.525]

    Основное положение теории Льюиса заключается в том, что кислотно-основные процессы не могут сводиться только к передаче протона. По Льюису, кислота — это вещество, сгособное использовать свободную пару электронов посторонней молекулы для образования устойчивой электронной оболочки, а основани е— это вещество, обладающее свободной парой электронов, которая может быть использована для образования устойчивой электронной конфигурации с посторонним атомом. Таким образом, всякое равновесие, удовлетворяющее этому признаку, следует рассматривать как кислотно-основное. Например, при взаимо-де11ствии 50з и НзО вода является основанием, так как имеет свободную пару электронов, а серный ангидрид, который может взаимодействовать с водой, используя эту пару электронов, является кислотой. [c.471]

    Способ ВНИИТНефти хотя и более простой, является в то же время и менее точным, очевидно, в связи с тем, что сернистый ангидрид не успевает полностью поглотиться раствором соды, в то время как применение таких энергичных окислителей, как йод или перекись водорода, дает достаточную гарантию перевода всего количества SO2 в серный ангидрид, полностью поглощаемый водой с образованием серной кислоты. [c.410]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]

    Преимуществом печи ДКСМ перед печами КС является интенсификация процесса утилизации избыточного тепла горения колчедана, а также охлаждения обжиговых газов па втором слое, созданном огарковой пылью до 450 °С, с целью снижения образования серного ангидрида. [c.55]


    Присутствие серного ангидрида в больших количествах ведет к суль-фатизации огарковой пыли и затрудняет электростатическую очистку обжигового газа. Верхний кипящий слой создается при условии, что скорость газового потока в отверстиях газораспределительной решетки создает динамический напор больше, чем давление кипящего слоя на площадь этих отверстий. Для образования верхнего кипящего слоя необходимо также осаждение частиц огарка, поступающих из нижней зоны, что достигается резким снижением линейной скорости потока газа в верхней зоне печи. [c.55]

    Процесс Модоп. Процесс отличается высокой селективностью в конверсии углеводородсодержащих соединений серы. Такая селектив-ность процесса достигается благодаря применению оксиднотитанового катализатора, на котором сероводород может превращаться в серу, взаимодействуя со стехиометрическим количеством воздуха с образованием лишь следов сернистого ангидрида при полном отсутствии серного ангидрида. Катализатор Ск -31, применяемый в процессе, на 80% состоит из диоксида титана и сохраняет высокую активность в течение многих лет непрерывной работы [1]. [c.176]

    Удаление серосодержащих отходов — проблема, аналогичная удалению галогеноорганических отходов. При сжигании серосодержащих отходов сера окисляется до сернистого ангидрида, а при достаточном избытке воздуха — до серного ангидрида. Оба эти окисла могут абсорбироваться в насадочной колонне раствором каустической или кальцинированной соды с образованием сульфита или бисульфита натрия. Другим способом удаления серы служит впрыск в зону горения водного раствора каустической или кальцинированной соды. [c.139]

    Сульфатирование спиртов серным ангидридом имеет те же преимущества, что и при сульфировании хлорсульфоновой кислотой. Кроме того, серный ангидрид дешевле хлорсульфоновой кислоты, н дает образования НС1 и, следовательно, не нужна стадия утилизации НС1. Поэтому сульфатирование серным ангидридом является сейчас наиболее перспективным и вытесняет другие способк. [c.325]

    Каталитическое окисление сернистого ангидрида в серный — основной процесс в производстве серной кислоты. В контактном способе производства серной кислоты [1] сернистый газ обычно получают обжигом сульфидных руд или сжиганием серы. Затем газ тщательно очищают от пыли, тумана серной кислоты и контактных ядов, сушат и подают компрессорами в контактное отделение. В контактном отделении газ подогревается в теплообменниках до температуры зажигания катализатора и проходит в контактных аппаратах через слои катализатора. На катализаторе идет окисление 802 кислородом, содержащимся в исходном газе. Далее газ, содержащий 80з, охлаждается в теплообменниках сначала исходным газом, затем воздухом. Серный ангидрид поглощается серной кислотой с образованием олеума или моногидрата Н2804. [c.139]

    В-третьих, однопол очные аппараты ввиду простоты их конструкции заманчиво применять для короткой схемы сухой очистки [1, 26] производства серной кислоты контактным способом на газе от обжига серного колчедана. В этом случае газ, содержащий 8—10% ЗОз, после неполной сухой очистки поступает в контактный аппарат. Минимальная степень превращения для короткой схемы составляет около 80%, поэтому необходим высокий слой катализатора — 350— 450 мм. Оптимальная температура составляет 520—500° С, тогда как при адиабатическом режиме [уравнение (111.12)] она была бы 700° С. Поэтому необходимо отводить из слоя большое количество тепла и целесообразно устанавливать трубы парового котла непосредственно в кипящем слое катализатора, используя хорошую теплоотдачу. Газ после контактного аппарата охлаждается в теплообменниках, затем серный ангидрид абсорбируется с образованием загрязненного олеума и моногидрата, а оставшийся чистый газ поступает во вторую стадию окисления в аппарат с фильтрующими слоями катализатора и затем на повторную абсорбцию. Достигается весьма высокая степень окисления 30а х = 0,995), а также более полная абсорбция серного ангидрида. Загрязнение атмосферы уменьшается в несколько раз по сравнению с обычными системами. Себестоимость кислоты по сравнению с обычными установками снижается вследствие отсутствия громоздких и дорогих в эксплуатации мокрых электрофильтров и промывных башен, а также благодаря использованию тепла реакций для получения пара. [c.151]

    Согласно табличным данным, теплота смешения ЗОд с водой при 60° С с образованием 20%-ного олеума равна 5,55 ккал1г-мол серного ангидрида или 5,55-12,5 = 69,4 ккал1кг. [c.102]

    Способы получения сульфонола в Советскол Союзе разработаны Л. А. Потоловским, И. Ф. Благовидовым, А. И. Доладугиным и др. Производство сульфонола состоит из нескольких стадий полимеризации пропилена с образованием додецилена, алкилирования бензола додециленом, сульфирования додецилбензола олеумом или серным ангидридом, нейтрализации оставшейся сульфокислоты, сушки полученного продукта и приготовления стиральных порошков. [c.353]

    Присутствие сероводорода в циркулирующем газе приводит к коррозии аппаратов установки, особенно змеевиков печи. В результате требуется более частая регенерация катализатора. При регенерации катализатора, работавшего в присутствии сернистого сырья, получается серный ангидрид, который взаимодействует с активной окисью алюминия с образованием сульфата алюминия, В результате возникает необходимость в сложной и глубокой реге-нерации катализатора вне реактора или в полной его переработке (вплоть до извлечения платины). Поэтому регенерацию не следу ет проводить сразу же после отравления катализатора серой, сначала необходимо поработать на малосернистом сырье. [c.143]

    Реакция соировождается образованием изэтионовой кислоты в качестве побочного продукта. Из 2 кг серного ангидрида Пургольд [204в] получил 600 г этилового эфира хлорсульфоновой кислоты. Этот же эфир он приготовил, кроме того, действием нятихлористо-го фосфора на этилсульфат калия  [c.38]

    Взаимодействие этилового эфира хлорсульфоновой кислоты с ди-метиланилином в растворе хлороформа при низкой температуре ведет к образованию хлористого этила и продукта присоединения диметиланилина к серному ангидриду наряду с хлористым диметил этилфениламмонием  [c.41]

    Галоидные производные диметилсульфата. Известны два галоидных производных диметилсульфата. Серный ангидрид реагирует с монохлордиметиловым эфиром [429] при низкой температуре с образованием смеси продуктов, из которой с выходом 27% выделен хлорметилметилсульфат  [c.74]

    Данные, которые позволили бы сравнить полученные этими методами выходы, отсутствуют, но последняя реакция, повидимому, приводит к лучшим результатам. С промышленной точки зрения более интересна реакция между серным ангидридом и р-дихлордиэтиловым эфиром [458]. Последний легко растворяет серный ангидрид при комнатной температуре, почти н обнаруживая признаков химического взаимодействия, по при перегонке раствора получается 85—90%-ный выход дпхлорди-этилсульфата, образование которого, как можно предполагать, происходит в результате перегруппировки  [c.79]

    Из 1,3 кг этилового эфира и 1,5 кг серного ангидрида получено 600 г диэтилсульфата. Увеличение количества серного ангидрида до 2,1 кг привело к образованию 750 г изэтионовой кислоты. Из 100 г диэтилсульфата п 88 г серного ангидрида получено 5,4 г метионата бария СН2( 0з),Ва. Наилучшин метод получения изэтионовой кислоты состоит в сульфировании сухого этилового эфира газообразным серным ангидридом при 0°, после чего реакционная смесь обрабатывается водой для удаления диэтилсульфата (диэтилсульфат можно подвергнуть последующему сульфированию) и этионовая кислота гидролизуется кинячением водного раствора. [c.146]

    Большое внимание было уделено сульфированию жирных кислот различными реагентами. Действие серной кислоты [322] или хлорсу.чьфоновой кислоты [323] на уксусную кислоту ведет к образованию сульфоуксусной кислоты. Применяя серный ангидрид [324], можно получить промежуточный смешанный ангидрид  [c.160]

    Обработка пропионовой кислоты серным ангидридом или про-пионового ангидрида серной кислотой ведет к образованию смешанного ангидрида [328], который перегруппировывается при нагревании в а-сульфокислоту выход последней вследствие наличия побочных процессов составляет только 55%. При прямом действии олеума иропионовая кислота дает с выходом 75% ту же сульфокислоту, что указывает на возможность образования сульфо-соединения не только перегруппировкой смешанного ангидрида, но и другими путями. и-Масляная [325а, 329], изомасляная [330], н-валериановая [331], изовалериановая [332], метилэтил-уксусная [333] и метил-к-пропилуксусная кислоты [334а] пря- [c.160]

    ИЛИ олеумом [65, 68] и и-бутилбензола олеумом [69] получены с высоким выходом п-сульфокислоты и небольшие количества ортпо-изомеров. Действием серной кислоты, содержащей небольшое количество серного ангидрида, удалось превратить вторичный бу-тилбензол [70], третичный бутилбензол [71], несколько изомерных амилбензолов [72, 73], гексилбензолов [74 а—г], а также н-октил-бензол [74 д] в соответствующие сульфокислоты, несомненно, представляющие собой пара-изомеры. Впрочем, прямого доказательства этого не получено, за исключением неопентилбензола [73], из которого с 95%-ным выходом синтезирована л-сульфокислота, превращенная путем окисления в соответствующую бензойную кислоту. Образование о-сульфокислот в указанных реакциях незначительно. л-Гексадецил и н-октадецилбензолы с олеумом [75 а] также дают л-сульфокислоты, строение которых установлено путем сплавления со щелочью. Эти высшие алкилбензолсульфокислоты являются хорошими агентами для расщепления жиров [75 6].  [c.18]

    I-Дихлорбензол превращен в моносульфокислоту посредством 10%-ного олеума [179, 185] и серного ангидрида [184]. При применении олеума для окончания реакции при комнатной температуре требовалось 24-часовое взбалтывание. При обработке л-дихлор-бензола в течение 1 часа избытком хлорсульфоновой кислоты [186] при 150° образуется сульфохлорид с выходом 85%. Нагревание при 140° в продолжение 48 час. приводит к образованию смеси [187] 2,5-дихлорбензол-1,3-дисульфохлорида и изомерного [c.28]

    Кроме указанных выше методов синтеза, л-сульфобензойная кислота получена действием на бензойную кислоту серного ангидрида [244], а также из бензоилхлорида и серной кислоты [245] или сульфата серебра [246]. Диоксансульфотриоксид реагирует с бензойной кислотой [220] при комнатной температуре с образованием кислого сульфата бензоила  [c.40]

    Сульфирование сложных эфиров фенола. При действии серного ангидрида на фенилбензоат 304] сульфогруппа входит в фенольное ядро с образованием, повидимому, л-сульфокислоты. Фениле а лици лат (салол) гидролизуется серной кислотой [278) и с хорошим выходом дает фенол-л-сульфокислоту [c.47]


Смотреть страницы где упоминается термин Серный ангидрид образование: [c.35]    [c.434]    [c.184]    [c.433]    [c.526]    [c.324]    [c.101]    [c.348]    [c.140]    [c.56]    [c.149]    [c.149]    [c.193]    [c.9]    [c.12]    [c.24]    [c.36]   
Технология серной кислоты (1971) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Серная образования

Серный ангидрид



© 2025 chem21.info Реклама на сайте