Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Солюбилизация мицеллярная

    Солюбилизация. Мицеллярные растворы ПАВ обладают способностью к солюбилизации — повышенной растворимости углеводородов в водных растворах ПАВ, так как они поглощаются неполярными ядрами мицелл. Солюбилизация протекает самопроизвольно с убылью свободной энергии. При этом образуются прозрачные, термодинамически устойчивые, равновесные системы, не расслаивающиеся со временем. При достаточном количестве взятого углеводорода солюбилизация заканчивается образованием [c.245]


    Главная особенность мицеллярных растворов — способность к солюбилизации, т. е. к самопроизвольному растворению веществ, в обычных условиях нерастворимых в данном растворителе. Например, нефть становится растворимой в мицеллярной системе вода — ПАВ, хотя, обычно нефть не растворяется в воде и в истинном водном растворе ПАВ. [c.186]

    Одно из основных и важнейших свойств мицеллярных растворов ПАВ - их склонность к солюбилизации, т.е. коллоидному растворению гидрофобных веществ (например, битумов) в родственных им по природе углеводородных ядрах мицелл. Солюбилизация начинается тогда, когда концентрация ПАВ достигает уровня ККМ. При концентрации ПАВ выше ККМ число мицелл увеличивается и солюбилизация идет более интенсивно. Солюбилизирующая способность ПАВ растет в пределах данного гомологического ряда по мере увеличения числа углеводородных радикалов и их удлинения. Ионогенные ПАВ обладают большей солюбилизирующей активностью по сравнению с неионогенными. На рис. 13 схематически представлен механизм солюбилизации неполярного гидрофобного вещества, например - битума. [c.68]

    Опыты при температурах 25 и 65 °С показали, что повышение температуры гидросмесей вызывает увеличение времени наступления максимальной мицеллярной растворимости мазута в растворе сульфонола, при этом солюбилизация увеличивается. [c.95]

    Солюбилизация олеофильных веществ приводит к более или менее глубокой перестройке мицеллярной структуры раствора. Характер и степень изменения мицеллярной структуры определяются типом мицелл, природой и концентрацией добавки. Систематические исследования этого вопроса принадлежат П. А. Ребиндеру и 3. Н. Маркиной с сотрудниками. [c.73]

    Солюбилизация углеводородов в растворах ПАВ, содержащих сферические мицеллы, вызывает увеличение вязкости (при сохранении ньютоновского характера течения), светорассеяния, коэффициента диффузии. Это указывает на повышение мицеллярной массы и размера мицелл. По реологическим данным солюбилизация углеводородов в растворах жирнокислых мыл приводит к увеличению объема мицелл в 2—3 раза [21]. [c.73]

    В области существования пластинчатых мицелл солюбилизация может приводить к глубоким изменениям мицеллярной структуры. На это указывают изменения реологических свойств растворов мыл в присутствии солюбилизированных веществ, подробно изученных П. А. Ребиндером и 3. Н. Маркиной с сотрудниками. [c.75]

    Солюбилизация играет большую роль в разрабатываемых в настоящее время методах повышения полноты извлечения нефти из пластов с помощью мицеллярных растворов. Наиболее перспективным считается метод мицеллярно-полимер-ного заводнения — вытеснение нефти из пластов мицелляр-ными растворами, продвижение которых по пласту осуществляется раствором полимера. Применяемые в этом процессе мицеллярные растворы представляют собой сложные четырехкомпонентные системы вода — ПАВ — углеводород — спирт. Углеводород (керосин, сырая легкая нефть) содержится в солюбилизированном состоянии в смешанных мицеллах. [c.86]


    Таким образом, коэффициент распределения Кр при солюбилизации характеризует сродство солюбилизата к мицеллярной фазе. Количественной мерой этого сродства яв- [c.190]

    Солюбилизация является важным свойством растворов ПАВ, которое связано с их мицеллярной структурой. [c.412]

    Значение мицеллярных растворов ПАВ для биологических систем и практики определяется главным образом способностью мицелл солюбилизировать различные вещества. Кроме того, в настоящее время мицеллы рассматривают как модели биологических мембран благодаря сходству некоторых свойств структуры мембран и мицелл. Мицеллы солей желчных кислот играют важную роль в транспорте и адсорбции липидов, являются солюбилизаторами холестерина, обеспечивают вывод лекарств из организма. Примеры практического применения мицелл ПАВ многообразны. Мицеллярные системы обладают сильным моющим действием. При сухой химической чистке происходит солюбилизация обратными мицеллами полярных загрязнений с тканей прямыми мицеллами солюбилизируются жирные углеводородные загрязнения, на чем основано моющее действие ПАВ. [c.445]

    Солюбилизация характерна не только для мицеллярно-коллоид-ных растворов ионообразных веществ, но и для истинных растворов поверхностно-активных полимеров. Это явление подробно изучили П. И. Зубов и В. А. Пчелин. Солюбилизация весьма характерна для действия поверхностно-активных веществ в качестве моющих средств, и устойчивое отмывание жидких масляных загрязнений в значительной мере связано с их солюбилизацией в мицеллах мыл. Это соответствует также тому, что моющее действие обнаруживается лишь при концентрациях более высоких, чем критическая концентрация мицеллообразования. [c.58]

    Это можно иллюстрировать на примере коллоидных растворов мыл, имею щих ясно выраженное мицеллярное строение. Для этих мицелл, как типичных гидрофильных коллоидов, характерно явление, совершенно не свойственнее гидрофобным системам и называемое солюбилизацией. [c.275]

    Растворы полноценных ПАВ являются коллоидными, так как им присущи основные признаки коллоидного состояния — коллоидная дисперсность и двухфазность. В отличие от обычны с коллоидных систем они термодинамически равновесны и образуются самопроизвольно, в связи с чем раньше их называли полуколлоид-ными растворами. Благодаря наличию мицеллярных структур растворы полноценных ПАВ обладают особыми свойствами. Они способны обеспечивать коллоидное растворение практически нерастворимых лиофобных веществ (солюбилизация). Например, водные растворы мыл способны солюбилизировать различные углеводороды. Солюбилизация происходит в результате перехода углеводородов во внутреннюю часть мицелл. Солюбилизация играет существенную роль в эмульсионной полимеризации и является одной из причин моющего действия полуколлоидов. [c.119]

    Таким образом, солюбилизация является одним из вал<ней-ших свойств мицеллярных растворов, определяющих их щирокое применение в народном хозяйстве и в быту. Это — эмульсионная полимеризация, изготовление пищевых продуктов, получение фармацевтических препаратов и т. д. в промышленности, это — один из факторов моющего действия ПАВ. [c.326]

    Свойством мицеллярных растворов, непосредственно вытекающим из строения мицелл ПАВ, является солюбилизация, т. е. внедрение мало- или практически не растворимых в дан- [c.358]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента, в зависимости от его природы, может либо затруднять мицеллообразование, либо (что наблюдается чаще) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярных органических веществ, например низших спиртов. Такие вещества увеличивают молекулярную растворимость ПАВ и вследствие этого затрудняют мицеллообразование. Введение этих же веществ, но в малых количествах, и особенно добавление неполярных углеводородов приводит к некоторому понижению ККМ, т. е. облегчает мицеллообразование. При этом существенно изменяется строение мицелл введенный в качестве добавки третий компонент входит в состав мицеллы. В результате практически нерастворимые в чистой воде углеводороды растворяются в мицеллярных дисперсиях ПАВ. Это явление — включение в состав мицелл третьего компонента, нерастворимого или слабо растворимого в дисперсионной среде, называется солюбилизацией. Различают прямую солюбилизацию (в водных дисперсиях ПАВ) и обратную (в углеводородных системах). [c.232]

    Рассмотрим закономерности этого процесса на примере прямой солюбилизации при введении в водную дисперсию мицеллообразующих ПАВ углеводородов и спиртов, по данным детальных исследований 3. Н. Маркиной. Как известно, растворимость углеводородов в воде очень мала и составляет, например для октана, 0,0015%. Вместе с тем в 10%-ном растворе олеата натрия может быть растворено приблизительно 2% октана, т. е. эффективное значение растворимости этого углеводорода возрастает более чем на три порядка. Количественно способность к солюбилизации может быть охарактеризована величиной относительной солюбилизации 8 — отношением числа молей солюбилизированного вещества Л сол к числу молей ПАВ, находящегося в мицеллярном состоянии Л миц  [c.232]


    Ориентирование и концентрирование молекул солюбилизированных веществ в мицеллах может приводить к существенному изменению кинетики химического взаимодействия солюбилизированных молекул между собой и с другими веществами, растворенными в среде. В некоторых случаях солюбилизация сопровождается значительным увеличением скорости химического взаимодействия, что лежит в основе нового направления химической кинетики — мицеллярного катализа, развиваемого И. В. Березиным с сотр. и другими научными коллективами. Явление солюбилизации играет важную роль в процессах эмульсионной полимеризации непредельных углеводородов при синте- [c.234]

    Как указывалось выше, солюбилизация может быть прямой (поглощение углеводородов мицеллами в водных дисперсиях) и обратной (поглощение воды мицеллами в углеводородной среде). В результате на диаграмме состояния трехкомпонентных систем вога — ПАВ — углеводород могут, в зависимости от температуры, возникать более или менее широкие ПАВ области прямых и обратных солюбилизированных мицеллярных систем (вплоть до жидкокристаллических) со сложными переходами между ними (рис. УП1—18). Дополнительное разнообразие вносит в диаграммы состояния четвертый компонент, например спирт.  [c.235]

    В данной схеме первичным актом взаимодействия т молекул моющей присадки А с п элементарными частичками нераство-ренного продукта 8 является солюбилизация последнего, характеризуемая константой В результате солюбилизации образуются мицеллярные структуры типа AmSn , при этом имеется возможность последующего диспергирования нерастворимого продукта на Я более мелких частей. С течением времени происходят седиментация коллоидиорастворенных в масле продуктов и их осаждение на деталях двигателя в виде лака и нагара. Высокая константа скорости седиментации ( 2) обусловливает плохие моющие свойства масла. Одним из возможных и наиболее действенных путей предотвращения седиментации и повышения в связи с этим агрегативной устойчивости системы является солюбилизация и диспергирование нерастворимых в масле частиц. При этом нетрудно вычислить, что в первом приближении количество выпавших в осадок частиц будет изменять- [c.220]

    Развитие представлений о мицеллярной структуре и солюбилизации в водных растворах поверхностно-активных веществ привело к выводу, что полимеризация коллоидно-растворенного мономера начинается в мицеллах мыл и затем протекает в полимер-мономерных частицах [28—31]. Эти представления легли в основу математической модели и теории эмульсионной полимеризации, развитой Смитом и Эвартом [32, 33]. [c.147]

    Дальнейшее развитие описанных представлений нашло отражение в работах других исследователей. Так, принимается, что вокруг капель эмульсии мономеров спонтанно образуются ультрамикроэмульсии, размер которых близок к размеру частиц латекса. Эти ультрамикроэмульсии рассматриваются как мицеллярные растворы с солюбилизацией воды — жидкокристаллическая мезо-фаза в системе эмульгатор — вода — мономер. Наличие их на поверхности раздела фаз обусловливает существование структурно-механического барьера стабилизации эмульсий. Считается, что капли ультрамикроэмульсий являются зоной протекания реакции полимеризации [26]. [c.147]

    Так, термин мицелла впервые был введен Мак-Бэиом в 1913 г, для обозначения агрегатов дифильных электролитов в водных растворах. Как известно, фундаментальной характеристикой мицеллообразующих веществ является дифильность их молекул, т, е, наличие в молекуле полярной и неполярной частей. В основе современных представлений о структуре мицеллы лежит модель Дж. Хартли, согласно которой мицеллы имеют жидкоподобное ядро, образованное из полярных головок или углеводородных хвостов (в зависимости от типа мицеллярного раствора). Граничный слой образован соответственно углеводородными частями или полярными группами тех же самых молекул, что формируют ядро мицеллы. Процесс мицеллообразования носит кооперативный характер и начинается по достижении критической концентрации мицеллообразования. Сегодня же понятие мицелла используют не только в его первоначальном смысле, но и более широко для обозначения упорядоченных областей в полимерах, органических коллоидных частиц, обнаруженных в угле, глинах и т. д. Такая трансформация термина мицелла не оправдана. Именно поэтому на Международном симпозиуме по мицеллообразоваиию, солюбилизации и микроэмульсиям было предложено применять его в первоначальном смыс.ш Г1191. [c.71]

    Солюбилизирующее действие растворов ПАВ начинает проявляться лишь при концентрациях, превышающих ККМ. Это указывает на прямую связь солюбилизирующей способности с наличием в растворе мицеллярных структур. Различными физическими методами показано, что в основе солюбилизирующего действия лежит поглощение молекул со-любилизата мицеллами ПАВ. (Поэтому солюбилизацию называют также внутримицеллярньш растворением.) [c.69]

    В присутствии солюбилизата раствор ПАВ сохраняет коллоидно-мицеллярную структуру и обладает всеми признаками лиофильных дисперсных систем. Это отличает солюбилизацию от внешне сходного с ней явления гидротроп и и — эффекта повышения растворимости олеофильных веществ в воде в присутствии некоторых добавок (гид-ротропных агентов), которыми могут служить водорастворимые полярные органические вещества (например, соли низкомолекулярных карбоновых кислот, фенолы, пиридин, алкилбензолсульфонаты с короткой алкильной цепью). Гид- [c.69]

    Характер концентрационной зависимости молярной солюбилизации может быть различным для разных конкретных систем. Например, при солюбилизации этилбензола в растворах калиевых мыл жирных кислот (рис. 22, а) величина линейно возрастает в широкой области концентраций. В случае же олеата натрия молярная солюбилизация остается постоянной в некоторой концентрационной области выше ККМ, после чего начинает резко возрастать при дальнейшем увеличении концентрации (рис. 22,6). Иногда обнаруживается ступенчатое повышение солюбилизирующей способности с концентрацией ПАВ (например, в случае биологически активного полуколлоида—холата натрия [26]). Но во всех случаях общей является тенденция к возрастанию солюбилизирующей способности при увеличении концентрации солюбилизатора, что связано с полидисперсным характером и лабильностью мицеллярных структур. [c.81]

    Увеличение олеофильности растворяемых веществ должно, казалось бы, способствовать повышению их растворимости в мицеллярной микрофазе систем ПАВ — вода. Между тем, как видно из приведенных данных, внутримицеллярная растворимость (оцениваемая величиной предельной молярной солюбилизации 8т) при этом, напротив, снижается. Это кажущееся противоречие устраняется, если способность к солюбилизации оценивать по величине коэффициента распределения добавки между водной и мицеллярной фазами. Как следует из табл. 5, величина Кр возрастает с увеличением длины углеводородной цепи солк>билизата и при переходе от ароматических к соответствующим парафиновым соединениям, от полярных веществ к углеводородам. Это означает, что увеличение олеофильности добавки повышает ее сродство к мицеллярной фазе и увеличивает полноту экстрагирования  [c.83]

    Влияние электролитов на солюбилизацию полярных органических веществ неоднозначно, однако в большинстве случаев электролиты понижают их растворимость, в отличие от углеводородов. Это объясняется различиями в способах включения полярных и неполярных молекул в мицеллы. Понижение степени дисперсности мицеллярного раствора под влиянием электролитов уменьшает суммарную площадь поверхностного слоя мицелл, в котором происходит локализация полярных молекул, что влечет за собой уменьшение солюбилизирующей способности по отношению к олеофиль-ным веществам полярного характера. [c.84]

    В последние годы все большее внимание привлекает эффект мицеллярного катализа [28] — ускорение или замедление органических реакций в результате солюбилизации реагентов (Или одного из них) мицеллами коллоидного ПАВ. Таковы, например, реакции гидролиза и сольволиза сложных эфиров, ацеталей, ортоэфиров, некоторые реакции замещения соединений алифатического и ароматического рядов. Увеличение константы скорости реакции при протекании ее в мицеллах может достигать 1—2 порядков по сравнению со скоростью реакции в воде. [c.85]

    Турбидиметрический метод определения внутримицелляр-ной растворимости рекомендуется в случае солюбилизации полярных органических веществ, например жирных спиртов. В этом случае, как уже отмечалось, солюбилизация приводит к образованию смешанных мицелл полярные молекулы добавки, внедряясь в мицеллы, располагаются в них аналогично молекулам мыла. Наличие неионизированных полярных групп в гидрофильной внешней части мицелл понижает плотность их поверхностного электрического заряда (и, следовательно, величину электростатической составляющей энергии мицеллообразования), что способствует укрупнению мицелл. Поскольку неионизированные полярные группы менее гидрофильны, чем заряженные, их внедрение в ионные мицеллы ослабляет гидрофильные свойства последних, что также способствует укрупнению мицеллярных агрегатов. Другими словами, полярные органические добавки гидрофо-бизируют мицеллы, снижают их устойчивость. [c.187]

    Траке в а Т. С., Маркина 3. Н. Влияние солюбилизации олеофиль- ных алифатических спиртов на мицеллярную структуру в системах олеат матрия — вода. — Там же, 1972, т. 34, № 6, с. 964—967. [c.214]

Рис. XIII, 8. Солюбилизация бензола в мицелле олеата натрия а—мицеллярный раствор до солюбилизации б —то же после солюбилизации, Рис. XIII, 8. <a href="/info/73156">Солюбилизация бензола</a> в <a href="/info/73156">мицелле олеата натрия</a> а—<a href="/info/8853">мицеллярный раствор</a> до солюбилизации б —то же после солюбилизации,
    Процесс растворения в мицеллярных системах нерастворимых в чистых жидкостях соединений называют солюбилизацией или коллоидным растворением. Поглощаемое вещество называют солюбили-затом, поверхностно-активное вещество — солюбилизатором, получающиеся при этом явлении прозрачные устойчивые во времени растворы — солюбилизованными системами. [c.445]

    Значительные объемные свойства водных растворов мылообразных поверхностно-активных веществ, т. е. веществ с достаточно длинными углеводородными цепями и достаточно гидрофильными полярными группами, образующих лиофильные коллоидные системы, хорошо подтверждаются закономерностями своеобразного явления солюбилизации, иногда называемой индуцированной (коллоидной) растворимостью. Солюбилизация — это сильно повышенная растворимость неполярных или малополярных веществ в мицеллярных растворах мылообразных п - пхностно-активных веществ. Типичным примером яв- [c.57]

    Моющие вещества должны обладать всеми свойствами, характерными для поверхностно-активных веществ предшествующих трех групп они должны сильно понижать поверхностное натяжение воды на границе с воздухом, т. е. иметь высокую поверхностную активность, обнаруживая смачивающее и вместе с тем гидрофилизующее действие. Образуя пространственные мицеллярные структуры в объеме раствора и особенно в поверхностных слоях, моющие вещества должны быть не только диспергаторами, но и сильными стабилизаторами суспензий и эмульсий (эмульгаторами). Они должны вызывать также солюбилизацию углеводородных и вообще масляных загрязнений в ядрах мицелл, что составляет, по-видимому, важную слагающую в комплексе моющего действия. [c.73]

    Свойством мицеллярных растворов, непосредственно вытекающим из строения мицелл ПАВ, является солюбилизация, т. е. внедрение мало- или практически нерастворимых в данном растворителе веществ в мицеллы, что приводит к резкому увеличению растворимости этих веществ в мицеллярных растворах. Например, бензол, гептан, керосин, минеральные масла и некоторые другие псевдорастворяются в водных растворах ПАВ при с > ККМ. На введении маслорастворимых красителей внутрь мицелл основан один из методов определения ККМ длинноцепочечных ПАВ (метод солюбилизации красителя). При этом, в зависимости от природы солюбилизата (вещества, внедряющегося в мицеллу) возможно его включение либо внутрь мицеллы в масляную фазу (гидрофобный солюбилизат), либо в поверхностный слой мицеллы [c.325]

    При этом сущест-венно изменяется строение мицелл введенный в качестве добавки третий компонент входдт в состав мицеллы. В результате практически нерастворимые в чистой воде углеводороды растворяются в мицеллярных дисперсиях ПАВ. Это явление — включение в состав мицелл третьего компонента, нерастворимого шш слаборастворимого в дисперсионной среде, назьшают солюбилизацией. Различают прямую солюбилизацию (в водных дисперсиях ПАВ) и обратную (в углеводородных системах). [c.279]


Библиография для Солюбилизация мицеллярная: [c.182]   
Смотреть страницы где упоминается термин Солюбилизация мицеллярная: [c.215]    [c.290]    [c.299]    [c.59]    [c.78]    [c.57]    [c.326]    [c.359]    [c.233]   
Лакокрасочные покрытия (1968) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Мицеллярный

Солюбилизация



© 2024 chem21.info Реклама на сайте