Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, определение диффузионный метод

    Чем объяснить различия в значениях средних молекулярных масс, определенных диффузионным методом и методом седиментационного равновесия  [c.74]

Рис. 1.11. Принципиальная схема установки для определения молекулярной массы полимеров диффузионным методом Рис. 1.11. <a href="/info/844583">Принципиальная схема установки</a> для <a href="/info/377183">определения молекулярной массы полимеров</a> диффузионным методом

    Преимущество диффузионного метода перед другими методами определения средневзвешенной молекулярной массы M , заключается в том, что при этом способе макромолекулы нахо- [c.43]

    При определении молекулярного веса полимеров со сферическими молекулами диффузионным методом поступают так же, как и при нахождении этим же способом численного веса коллоидных систем. Сначала экспериментально определяют коэффициент диффузии, затем, пользуясь известным уравнением Эйнштейна, вычисляют радиус молекулы и, наконец, зная радиус молекулы и плотность растворенного вещества, находят массу 1 моля вещества. [c.456]

    Впервые диффузионный метод предложил Стефан для определения коэффициента молекулярной диффузии. Дести применил его для приготовления сильно разбавленных смесей с концентрацией 10" — 10 объемн.% и ниже. Готовить смесь такой концентрации обычными методами очень трудно. [c.270]

    Среднемассовая молекулярная масса измеряется тогда, когда вклад каждой группы молекул, обладающих определенной молекулярной массой, пропорционален массе молекул этой группы. Для определения используют гидродинамические методы (вискозиметрия, диффузионные методы, ультрацентрифугирование) и метод светорассеяния. [c.162]

    Кроме скоростных ультрацентрифуг, применяемых при измерении скорости седиментации (значительно преобладающей над процессами диффузии), применяют также ультрацентрифуги с меньшим числом оборотов (до 20 ООО об/мин), в которых скорости седиментации и диффузионного переноса близки и поэтому устанавливается седиментационное равновесие. Молекулярный вес при определении по методу седиментационного равновесия, [c.44]

    Осмометрический и диффузионный методы определения молекулярного веса белков в первый период их применения давали недостаточно удовлетворительные результаты. В дальнейшем, с усовершенствованием этих методов, их стали с успехом применять для определения молекулярного веса наиболее сложных органических соединений, в частности белков. [c.11]

    Так, молекулярные веса различных каучуков (натуральных и синтетических), определенные вискозиметрическим и диффузионным методами , для сравнительно низкомолекулярных образцов (молекулярный вес до 100 ООО) более или менее совпадают для более высокомолекулярных продуктов величина молекулярного веса, найденная диффузионным методом, в 4—5 раз превышает величину, найденную вискозиметрическим методом. [c.52]


    Диффузионный метод. Диффузионный метод определения молекулярного или мицеллярного веса основывается на том, что скорость диффузии какого-либо вещества в растворитель обратно пропорциональна радиусу молекулы или мицеллы этого вещества. [c.16]

    Описаны 23 также соответствующие приборы для работы при низких температурах (стр. 814). При помощи диффузионного метода можно быстро проводить качественный анализ двойных систем при использовании микроколичеств препарата. Метод дает возможность получать сведения об образовании простой эвтектики, конгруэнтно и инконгруэнтно плавящихся молекулярных соединений, молекулярных соединений, устойчивых только при температурах ниже температуры плавления эвтектики, смешанных кристаллов (включая изодиморфизм и изополиморфизм), а также о появлении разрыва растворимости в жидкой фазе и др. Кроме того, исследование под микроскопом дает возможность определять важные узловые точки системы, К тому же диффузионный метод имеет большое значение для ориентировочной проверки количественных определений. [c.872]

    Диффузионный метод определения молекулярного веса. Диффузия макромолекул в растворе тесно связана с их размерами и формой по коэффициенту диффузии О и плотности р полимера можно вычислить его молекулярный вес. [c.408]

    Метод седиментационного равновесия. Определение молекулярных весов этим методом проводится при сравнительно небольших скоростях вращения ротора, порядка 7 ООО—8 000 об-мин , чтобы молекулы с большим молекулярным весом не осаждались на дно. Ультрацентрифугирование проводят вплоть до достижения частицами равновесия, устанавливающегося под действием центробежных сил, с одной стороны, и диффузионных — с другой, т. е. до тех пор, пока частицы не перестанут перемещаться. Затем по образовавшемуся градиенту концентрации рассчитывают молекулярный вес вещества согласно формуле [c.62]

    Следует отметить, что число опубликованных работ по определению коэффициентов диффузии ПЛВ весьма ограничено. Причем практически все сведения относятся к водным растворам. В литературе отсутствует также описание методов прямого определения количества ПАВ, продиффундировавшего из водного раствора в нефть. Обычно ограничиваются лишь косвенной оценкой количества ПАВ, продиффундировавшего из водного раствора в нефть, по изменению межфазного натяжения нефти на границе с дистиллированной водой [10]. Но такой способ отличается некоторой условностью. Дело в том, что неионогенные ПАВ, применяемые в нефтяной промышленности, состоят из фракций, отличающихся друг от друга молекулярной массой, поверхностной активностью и диффузионными свойствами [4]. При контакте водного раствора с нефтью молекулы таких ПАВ диффундируют неодинаково, и распределение их по фракциям н нефти становится иным, чем в исходном водном растворе. Все это отразится на точности определения количества продиффундировавшего в нефть ПАВ по калибровочному графику, построенному для ПАВ исходного состава. [c.12]

    Молекулярный вес — важная характеристика всякого высокомолекулярного соединения, обусловливающая все основные его свойства. Поскольку в процессе получения ВМС образуются смеси полимеров с различными длинами цепей, а следовательно, и с различным молекулярным весом (смеси полимер-гомологов), приходится говорить о некотором среднем молекулярном весе. Для определения молекулярного веса ВМС применимы почти все физико-химические методы, используемые для определения молекулярного веса низкомолекулярных веществ крио-скопический и эбулиоскопический, осмотический, диффузионный, оптический, вискозиметрический и др. В указанных методах применяются растворы ВМС в подходящих растворителях. [c.385]

    Все методы определения молекулярного веса высокомолекулярных соединений можно разделить на две группы 1) криоскопический, эбулиоскопический, осмотический методы (см. гл. V), основанные на вычислении молярной концентрации раствора, т. е. на определении числа частиц в навеске ВМС 2) диффузионный, вискозиметрический и оптический методы, основанные на вычислении среднего размера частиц в растворе. [c.385]

    Подобным образом были проведены расчеты поверхностного натяжения жидкостей. Применение современных ЭВМ позволяет по данным о е(г) проводить абсолютные расчеты свойств жидкостей. При этом в основном используют два метода. По первому методу молекулярной динамики решаются уравнения Ньютона для коллектива частиц, связанных энергией взаимодействия и обладающих некоторой заданной энергией. Такие расчеты удается делать для больших коллективов частиц (порядка тысяч). По второму методу — методу Монте — Карло — рассчитывают общие суммы состояния системы при заданной энергии взаимодействия и выборе возможных конфигураций расположения молекул друг относительно друга. С помощью ЭВМ были рассчитаны Я(г) термодинамические функции, вязкость, диффузионные характеристики и др. Кроме того, удалось определить характеристики траекторий определенных частиц. Оказалось, что частицы осуществляют весьма малые как бы дрожательные движения, в которых участвуют соседи. Поэтому понятия блужданий в жидкостях приобретают другой смысл, так как в них сразу участвует большое число частиц. Атом смещается тогда, когда его соседи в результате подобного коллективного движения освободят ему место. Теория диффузии в жидкостях, основан- [c.214]


    Определение молекулярного веса диффузионным методом является одним из основных методов исследования высокомолекулярных соединений благодаря тесной связи коэффициента диффузии с размером и формой диффундирующих частиц. Определение коэффициента диффузии может быть произведено по методу Ламма, принцип которого заключается в фотографировании точной микрометрической шкалы через столб жидкости, где происходит процесс диффузии. Вследствие наличия различной концентрации по вертикальным слоям кидкости положение делений шкалы на снимке будет изменено по сравнению с контрольным снимком шкалы, снятым через чистый растворитель. Различие в положении делений на обоих снимках измеряется нри помощи микрокомпаратора (с точностью до 1—2 ми1фонов) величина смещения нропорциона.льна изменению концентрации в данном слое столба жидкости. Производя спимки через разные промежутки времени, можно, не прерывая опыта, получить распределение градиентов концентрации по всему столбу жидкости при различной продолжительности диффузии. 2 Экспериментальная кривая после нормализации сравнивается с идеальной кривой по Гауссу, что позволяет оценить полидисперсность исследуемого вещества. [c.33]

    Определение молекулярного веса нитеобразных гибких молекул диффузионным методом гораздо более сложно, так как такие молекулы диффундируют иначе, чем сферические частицы, к которым только и приложимо уравнение Эйнштейна в его обычном виде—Поэтому при расчетах необходимо учитывать так называемый коэффициент дисимметрии (подробно об этом см. первое издание этого учебника, с. 498). [c.456]

    Одной из особенностей коллоидных растворов поверхностноактивных веществ является их способность к образованию мицелл. Молекулярный вес образующихся мицелл, так называемы мицел-лярный вес, составляет обычно несколько десятков тысяч. Значение средневесового мицеллярного веса ПАВ можно определить различными методами, которыми пользуются и для нахождения молекулярного веса полимеров. Сюда относятся методы, основанные на измерении светорассеяния растворами ПАВ и на определении диффузионной способности мицелл, а также метод седиментационпого анализа с помощью ультрацентрифуги. Наиболее эффективным и вместе с тем относительно простым методом оценки размеров коллоидных частиц в растворах является метод светорассеяния. С помощью этого метода определяют значение мицеллярного веса ПАВ в данной работе. Вывод теории светорассеяния применительно к разбавленным растворам ПАВ, содержащим мицеллы, размер которых не превышает /20 длины волны видимого света, может быть записан в следующей форме  [c.122]

    Зависимость с = с(х, I) позвох[яет определить коэффициент диффузии В и затем по формуле Эйнштейна (V. 3) рассчитать размер диффундирующих частиц. Так, диффузионный метод был применен Герцогом для определения эффективного размера молекулы тростникового сахара в водном растворе. Экспериментальное значение коэффихщента диффузии составило X) = 0,384 см /сут. Применяя уравнение (V. 3) и полагая, что молекулы имеют сферическую форму и плотность, равную плотности сахара в кристаллическом состоянии (р= 1,588), получаем для молекулярной массы значения Л/= /з рЛ л = 332, лишь немного отличающегося от истинного — 342. [c.175]

    Для экспериментального определения молекулярной массы полимеров применяются различные методы, причем одни дают среднечисловые значения (осмометрический, метод концевых групп), а другие — среднемассовые (метод, светорассеяния), средневязкостные (вискозиметрический метод), среднедиффузпонные (диффузионный метод) или среднеседиментационные (метод ультрацентрифуги). [c.524]

    Достоинство диффузионного метода в том, что он дает возможность исследовать макромолекулу в естественном , невозмущенном состоянии, не нарушенном действием внешних сил. Вместе с тем этот метод очень трудоемо и сложен в аппаратурном оформлении, поэтому он не нашел широкого применения для определения молекулярной массы полимеров. [c.539]

    Неаналитическая газовая хроматография включает методы изучения термодинамики абсорбции и адсорбции, определения диффузионных характеристик газов и жидкостей, а также методы изучения процессов хемосорбции и катализа и ряд других применений. В настоящее время упомянутые направления бурно развиваются главным образом благодаря работам Е. Глюкауфа, А. А. Жуховицкого, А. В. Киселева, С. 3. Рогинского,Т. Шая, Э. Кремер, Дж. Гиддинг-са, Р. Кобаяши, Д. Эверетта, П. Эберли и их сотрудников. Эти материалы содержатся в большом числе оригинальных публикаций. Глубокому обобщению были подвергнуты лишь данные по хроматографическому изучению термодинамики адсорбции (А. В. Киселев, Я. И. Яшин. Газо-адсорбционная хроматография ) и исследованию кинетики каталитических реакций (обзоры М. И. Яновского и Д. А. Вяхирева с сотр.). В связи с этим в настоящей книге основное внимание уделено хроматографическим методам исследования термодинамики растворов и изучения структуры и свойств катализаторов, а также освещены вопросы хроматографического определения коэффициентов диффузии, молекулярных масс и т. д. [c.3]

    Предпринимались попытки определить коэффициент извилистости и с помощью глобулярных моделей. Методом усреднения траекторий молекул вокруг шаров при молекулярной диффузии было получено соотношение р = 1 — (4 — я) (1 — е) /п. Для кнудсеновской диффузии авторами [124] было предложена зависимость Р = л/з/е- Используя вариационный метод двойственных оценок с помощью модели хаотично расположенных сфер, автор [125] получил верхнюю оценку коэффициента диффузионной проницаемости для молекулярной диффузии /7 = е/( 1 — 0,5 1п е). Сравнение экспериментальных данных с правой частью этого соотношения показало эффективность оценки. Из изложенного следует, что коэффициенты извилистости и КДП, определенные различными методами, обусловливаются моделью пористой структуры, которая используется для рассмотрения диффузии в пористых катализаторах. Тем не менее можно говорить о том, что теоретические методы позволяют получить правильную качественную оценку для этих коэффициентов. С достаточным основанием можно считать, что КДП является нелинейной функцией пористости вида П — г1(г). Обработка опубликованных в литературе экспериментальных данных позволила оценить интервалы изменения КДП промышленных катализаторов 0,25е < Я < е/(1 — 0,51пе) 0,1е < Якн < 0,5е и средние значения Ям = 0,5е, Лкн = 0,25е. Различие средних оценок и интервалов изменения КДП можно считать согласием с выводом о различии КДП для разных режи- [c.165]

    В тех случаях, когда полимеризации и исследованию подвергаются замещенные стиролы, строение цепи которых менее изучено, чем строение цепи полистирола, или когда возможно ожидать образования сложных разветвленных молекул, нельзя судить о среднем молекулярном весе полимера только по одному вискозиметрическому определению. Примером может служить невозможность сделать какие-либо определенные выводы о влиянии различных заместителей в ядре стирола на его способность образовать полимер с большим или меньшим молекулярным весом (гл. П, стр. 47). В этих более сложных случаях необходимо тщательно и разносторонне изучить строение цепи полимера, например, методом деструкции, примененным для полистирола (стр. 110), определить молекулярные веса полимеров хотя бы двумя из указанных методов, сравнить между собою результаты этих определений и только тогда судить о наиболее вероятном молекулярном весе изучаемых макромолекул. При этом может оказаться, что низкие молекулярные веса, определенные вискозиметрически, будут принадлежать веществам с сильно разветвленными макромолекулами. В таких случаях более близкими к действительным будут молекулярные веса, определенные осмометрическим илн диффузионным методом. [c.123]

    Приблизительно в 1910 г, был применен диффузионный метод, основанный на определении коэфициента диффузии. По этому методу были получены уже иные значения, например, для яичного альбумина близкие к 34 000, Затем в 1917 г, ири помощи осмометрнческого метода определили молекулярный вес кристаллического (наибо. 1ее чистого из существующих) яичного альбумина и нашли величины, лежащие око,то 34 000, Наконец, в 1923 г, путем центрифугирования определили молекулярный вес белка яичного альбу-лшна и нашли его равным 35 000. [c.311]

    Опубликованные в литературе данные но определениям молекулярного веса натрийбутадиеиовых каучуков не совпадают. Так, Комаров и Вальтер, пользуясь методом неполной вулканизации, определили молекулярный вес синтетического каучука в 25 ООО. Пасынский и Гатовская определяли молекулярный вес нефракционированного промышленного образца натрийбутадиеновог о каучука диффузионным методом и получили величину 73 ООО. Штаудингер и Фишер определили молекулярные веса различных бутадиеновых полимеров и нашли, что они лежат в пределах [c.392]

    Данные относительно молекулярного веса натрий-дивинило-вых каучуков разноречивы И. И. Жуков с сотрудниками [5], исходя из вискозиметрических определений, нашел, что молекулярный вес СКБ колеблется в зависимости от пластичности в пределах 3300—94 000. А. Пасынский и Т. Гатовская[6] определили диффузионным методом молекулярный вес одного образца СКБ и получили величину 73 ООО. И. И. Жуков и сотрудники [7], пользуясь осмотическим методом, определили молекулярный вес трех образцов тщательно фракционированного бесстержневого каучука, полученного полимеризацией при 20, 40 и 60°. Они установили, что молекулярный вес колеблется в значительных пределах для высшей фракции первого образца он оказался равным 729 ООО, а для низшей фракции третьего образца — 41 ООО. Эти же авторы отмечают различие в структуре макро- молекул, образующих низкомолекулярные и высокомолекулярные фракции. Б. А. Догадкин [2] считает средний молекулярный вес СКБ равным 80 ООО—130 ООО. [c.416]

    Диффузионный метод определения молекулярной массы. Диффузия макромолекул в раст пре- тргнп связана с их размепами й Е йои гю коэффициенту диффузии Р и плотности р полимера можно Тзыта Гитъ его молекулярную массу.  [c.537]

    Аддукты такого вида получаются также при таком плотном контакте твердых тел, при котором возникают ван-дер-ваальсов-ские связи, а также твердых и жидких тел. Следует заметить, что молекулярный контакт может в той или иной мере иметь место и при простом соприкосновении твердых тел. Но обычно площадь его крайне мала из-за неровностей поверхности твердых тел и разделения их прослойками сорбированного газа или жидкости, поэтому аддуктообразование при контакте твердых тел наблюдается только при определенных условиях, при которых плотность межмолекулярных связей, образующихся при их контакте, достаточно велика. Главные из этих условий — тесное сближение и удаление с поверхности контактирующих твердых тел мешающих примесей. Даже не очень сильное нагревание в вакууме позволяет прочно связывать твердые тела, плотно примыкающие друг к другу Плоскими чистыми поверхностями. На этом основан известный метод диффузионной сварки, в процессе которой совершается, однако, переход от молекулярного к атомному соединению (см. гл. IV). [c.37]


Смотреть страницы где упоминается термин Молекулярный вес, определение диффузионный метод: [c.458]    [c.537]    [c.455]    [c.162]    [c.455]    [c.151]    [c.272]    [c.220]    [c.218]   
Химия искусственных смол (1951) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная метод Метод молекулярных

Молекулярный вес, определение



© 2025 chem21.info Реклама на сайте