Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксихинолином ванадия

    Нельзя считать, однако, что при уменьшении концентрации ионов водорода условия осаждения всегда улучшаются. Иногда приходится уменьшать кислотность раствора только до некоторого предела, для того чтобы не осаждались другие ионы, присутствующие в растворе. Далее, при осаждении иона элемента, гидроокись которого имеет амфотерный характер, в щелочной среде образуется анион, как, например, АЮГ, МоО . Из приведенных иа стр. 104 данных видно, что оксихинолин не осаждает алюминия и цинка в сильнощелочной среде, а молибден перестает осаждаться даже в слабощелочной среде. Аналогичная зависимость наблюдается в ряде других случаев, например при осаждении ванадия купфероном и т. д. [c.105]


    Применяют изоамиловый спирт для экстракции тиоциа-натных комплексов железа при фотометрическом определении ванадия — 8-оксихинолином, молибдена — фенил-гидразином, меди — диэтилдитиокарбаминатом для отделения хлорида лития от других хлоридов щелочных металлов, извлечения нитрата кальция из смеси с нитратом стронция. [c.245]

    Для отделения урана (VI) от ванадия к анализируемому раствору добавляют аммиак до появления осадка гидроокисей, затем 0,4—0,5 мл соляной кислоты (уд. в. 1,19), разбавляют водой до 75 мл, прибавляют 6 мл 10%-ного раствора комплексона III, нагревают до кипения и кипятят в течение 10—12 мин. для восстановления комплексоном III ванадия (V) до ванадия (IV), который затем в условиях осаждения образует с избытком комплексона III прочный растворимый комплекс и не мешает отделению урана (VI). Раствор нейтрализуют аммиаком по метиловому красному, добавляют 1,1 мл уксусной кислоты (1 1), 25 мл 20%-ного ацетата аммония и разбавляют водой до 150—175 мл. Далее нагревают до 70°, прибавляют 5 мл 4%-ного спиртового раствора 8-оксихинолина и поступают так же, как выше описано. Метод позволяет количественно отделять 30—40 мг урана от 100 мг VA [900]. [c.276]

    Кроме отделения от тория, циркония и редкоземельных элементов осаждение урана (VI) при помощи 8-оксихинолина из уксуснокислых растворов (pH--5,3) в присутствии комплексона III позволяет количественно отделять уран также и от Fe (III), Al, Си, Со, Ni, Zn, d, Pb, Bi, Мп и ряда других элементов. При проведении осаждения в аммиачно-щелочной среде (рН 8,4) уран (VI) может быть количественно отделен от молибдена, вольфрама и ванадия [898]. [c.276]

    Метод дает удовлетворительные результаты. Присутствие небольших количеств иона аммония, соответствующих 1—5 мл концентрированного аммиака, не влияет на результаты определения молибдена. Содержание в растворе, из которого осаждают молибден, вольфрам, ванадий и железо при помощи 8-оксихинолина (pH 5,3), 0,01 мол/л ортофосфорной кислоты, не сказывается на результатах определения названных элементов. [c.163]

    При определении молибдена в присутствии пятивалентного ванадия последний восстанавливают до четырехвалентного состояния при помощи комплексона II или сульфита натрия в кислой среде [1028]. Четырехвалентный ванадий образует с комплексоном устойчивое соединение и не осаждается 8-оксихинолином при условиях осаждения шестивалентного молибдена. Удовлетворительные результаты получают при двадцати-. кратном количестве ванадия. [c.164]

    В объемном методе (см. стр. 20) после отделения титана алюминий осаждают 8-оксихинолином из раствора тартрата аммония, содержащего перекись водорода. В этих условиях молибден, не отделенный титан, ванадий и хром остаются в растворе. Оксихинолят алюминия растворяют в соляной кислоте, а алюминий определяют косвенным методом — бромированием выделившегося 8-оксихинолина . Этот метод применим для анализа сплавов, содержащих до 10% железа, марганца, хрома, молибдена, ванадия и олова. [c.18]


    Ванадий 8-Оксихинолин хлороформ 2,0-5,5 0,015 (550) 550 3,0 0,06 [c.272]

    При определении железа этим способом двухвалентные ионы окисляются током в трехвалентные. Кулонометрическое определение мышьяка основано на реакции окисления ионов АзО до ионов АзО . Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и др., основанные на электрохимическом окислении-восстановлении ионов этих элементов в растворе. Метод применим и для определения органических вещ,еств, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. [c.271]

    Методом радиоактивных индикаторов было установлено [175], что наиболее полное отделение ванадия от ряда сопутствующих элементов (железо, алюминий, хром, марганец, кобальт и никель) осуществляется экстракцией его из водного раствора фторида натрия 0,3% раствором 8-оксихинолина в изобутиловом эфире при рН = 3,5- 4,5. [c.95]

    Для концентрирования алюминия при анализе ванадия использован 8-оксихинолин. Раствор после извлечения диэтилдитиокарбаминатов доводили до рНЮ и алюминий извлекали двухкратной экстракцией 2%-ным раствором оксихинолина в хлороформе. Вместе с алюминием в экстракт переходит до 50 мкг ванадия, который, однако, почти полностью удаляется промыванием 1 %-ным раствором перекиси водорода. [c.82]

    Полученные таким способом концентраты анализировали спектральным методом. Экстракты упаривали на 50 мг угольного порошка, используемого в качестве сорбента. В случае ванадия для удаления 8-оксихинолина, перешедшего в экстракт, остаток прокаливали (при невысокой температуре). Потери алюминия и других элементов не наблюдалось, если эту операцию проводили с добавкой щавелевой кислоты. [c.82]

    Ванадий. 1 г металла помещают в кварцевую чашку и растворяют ъ 2)0 мл азотной кислоты (1 3). Полученный раствор упаривают на водяной бане, остаток подсушивают и прокаливают в течение 2—3 мин. при 400°С. Прокаленный остаток растворяют в 50 мл аммиака (1 10), добавляют 50 мл воды, раствор кипятят до слабого запаха аммиака, затем охлаждают и нейтрализуют до pH 8. Из полученного раствора пятикратной экстракцией извлекают элементы-примеси в виде диэтилдитиокарбаминатов. Объединенный экстракт 3—4 раза промывают водой порциями по 5 мл (экстракт I). Доводят pH водной фазы до 10, добавляют 5 мл раствора 8-оксихинолина в хлороформе и смесь встряхивают в течение [c.85]

    Для отделения алюминия от железа, никеля, титана и ванадия можно использовать добавление к водной фазе, доведенной до pH 5—9, 8-оксихинолина с последующей экстракцией осадка бензолом или хлороформом. [c.504]

    Заполнение чашечки веществами и сплавление проводят, как описано выше. По окончании сплавления плав пятиокиси ванадия выщелачивают водой. Полученный раствор переносят в сосуд во влажной камере. Проводя в этом растворе реакцию с 8-оксихинолином, наблюдают образование темного осадка. [c.94]

    Раствор феррованадия окрашен в голубой цвет ионами четырехвалентного ванадия. Его окисляют броматом калия, как описано в предыдущем опыте. Из полученного таким образом раствора осаждают едким натром гидроокись железа, отделяют раствор от осадка и переносят его в другой конус. Здесь выполняют реакцию с 8-оксихинолином, наблюдая образование тем- oгo осадка. [c.96]

    Возможность отделения алюминия от других элементов обусловлена тем, что он осаждается оксихинолином из растворов, содержащих а) уксусную I кислоту и ацетат аммония, б) аммиак, в) аммиак и перекись водорода и г) карбонат аммония. В первом случае алюминий отделяется от таких элементов, как магний и бериллий во втором — от фосфатов, арсенатов, бора и фтора в третьем — от молибдена, ванадия, титана, ниобия и тантала и, наконец, в четвертом — от урана. Отделение ряда элементов от алюминия может быть выполнено благодаря тому, ч го алюминий не осаждается оксихинолином из растворов, содержащих тартрат натрия и умеренные количества едкого натра, тогда как медь, кадмий, цинк и магний в этих условиях образуют нерастворимые оксихиноляты [c.149]

    Величина IgPpfi меняется в пределах 2,28—2,43. В эту подгруппу сульфидов включаются MnS, FeS, oS, NiS, ZnS. К ним относится и сульфид ванадила VOS. Все сульфиды подгруппы сернистого аммония окрашены, кроме сульфида цинка (белый). Так как катион хрома (II) обладает сильным восстановительным действием и неустойчив (хотя и образуют черный очень малорастворимый сульфид rS), то здесь рассматриваются катионы хрома (III), хромат- и бихромат-ионы кроме марганца (II), рассматриваются также манганат- и перманганат-ионы. Аналитические свойства хрома (III) объясняются структурой электронейтрального атома (ЗiiЧs ). То же самое наблюдается у меди (И) (3d "4si). Трисульфид хрома черно-коричневый, подвергается гидролизу вследствие меньшей растворимости гидроокиси хрома (III). В табл. 38 сопоставлены основные характеристики катионов этой подгруппы. Все катионы данной подгруппы легко переходят из одной степени окисления в другую, используются при редоксметодах анализа и как катализаторы в кинетических методах. В химико-аналитических реакциях этих ионов сказывается сходство их электронной структуры по горизонтальному направлению. Катионы ярко окрашены и образуют разнообразные комплексные соединения. 8-оксихинолин, который называют органическим сероводородом , дает характерные, ярко окрашенные внутрикомплексные соединения с этими катионами, начиная от титана и до цинка (табл. 38). [c.205]


    Чтобы отделить и обнаружить ванадий, используют также комплексы ванадия (IV) с 8-оксихинолином, купфероном и диэтилдитиокар-баматом, хорошо экстрагируемые хлороформом. [c.210]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]

    Амперометрнческое титрование алюминия основано на исполь-зовании в качестве титранта веществ, осаждающих алюминий или образующих с ним устойчивые комплексы. Титрант должен восстанавливаться на электроде (ртутном или платиновом). Возможно применение и невосстанавливающихся титрантов (например, NaF), если вводить в качестве индикатора эквивалентной точки вещество, дающее диффузионный ток (в данном случае ионы Fe " ). При амперометрическом опредв/тенин алюминия в качестве титрантов используют фториды натрия или калия [52, П6, 439, 441—443, 493, 1239], оксихинолин [116, 286, 380], растворы солей железа, кальция и ванадила при обратном титровании избытка комплексона [c.89]

    V (IV) с эриохромцианином R можно разрушить добавлением хлороформного раствора оксихинолина. Можно вводить поправку на ванадий, если известно его содержание (1% V эквивалентен 0,12% А1). Бериллий и цирконий дают окрашенные комплексы (2 мкг Ве эквивалентны 1 мкгА ) [6561. Комплексы бериллия и циркония можно разрушить фторидами. Комплексон III разрушает все комплексы, за исключением комплексов этих элементов торий образует комплекс только при низких pH и при высоких концентрациях эриохромцианина R. От многих элементов алюминий можно отделить при помош,и NaOH [8181. [c.103]

    Разделение элементов возможно и при использовании групповых экстрагентов, если варьировать условия экстракции (pH, концентрация компонентов системы, разбавитель). Часто ддя разделения элементов применяют 8-оксихинолин, дитизон, диэтилдитиокарбаминаты, уЗ-дикетоны. Так, с помощью раствора теноилтрифторацетона в бензоле, изменяя pH водной фазы, можно разделить ТЬ, В1, и, РЬ, Ас, Т1 (рис. 7.8). Если использовать в качестве экстрагента ацетилацетон без разбавителя, то вольфрам не экстрагируется. Ванадий(У) более эффеюивно экстрагируется раствором ацетилацетона в бутаноле, чем раствором ацетилацетона в хлороформе. [c.236]

    Навеску пентаокспда ванадия 0,5 г с точностью до 0,01 г растворяют в конической кварцевой колбе в 12 мл НС1 (2 3) при нагревании до кипения. Раствор охлаждают, переносят количественно в мерную колбу вместимостью 100 мл, вводят 8 мл 20%-ного раствора 8-оксихинолина в ледяной уксусной кислоте, разбавляют водой до метки и перемешивают. [c.130]

    Торий с ферроном (7-иод-8-оксихинолин-5-сульфокислота> образует при pH 2—3,5 труднорастворнмый, легко фильтрующийся осадок желтого цвета. Соединение, содержит две моле- лы феррона на атом тория ТЬ ( 9H464NSJ)2 [702]. Торий определяют в виде ТЬОг после прокаливания осадка. Большинство элементов не мешает определению тория ферроном среди них — р. 3. э., ванадий, ниобий, титан и др. Железо, серебро, ртуть и медь, напротив, соосаждаются вместе с торием. Установлено также [1760], что удовлетворительные результаты получаются в присутствии не более двухкратного избытка урана, в противном случае необходимо переосаждение. Сульфат-йоны мешают определению, так как в их присутствии не достигается полнота осаждения тория ферроном. Метод дает хорошие результаты. Максимальная ошибка 0,3%- [c.47]

    Для отделения урана (VI) этим методом pH анализируемого раствора (содержащего до г-моль л МаоСОз)добавлением едкого натра устанавливают в пределах 11,0—12,5 и экстрагируют два раза равным объемом метилизобутилкетона, содержащим в I л 0,3 моля 8-оксихинолина и 0,1 моля одного из указанных выше третичных аминов. Из органического слоя уран реэкстрагируют два раза равным объемом 0,5 М. раствора МаНСОд. Большая часть ванадия экстрагируется вместе с ураном. [c.312]

    Определение ванадия в рении основано на каталитическом действии У( У) иа окис.иительно-восстановительную реакцию между хлорат-коном и анилином в присутствии 8-оксихинолина. Метод позволяет фотометрически определить без отделения рения до V. Бллзкую чувствительность имеет метод, основан- [c.271]

    Грамм-эквивалент молибдена равен 95,95 20 = 4,7975. Пятивалентный ванадий восстанавливается до четырехвалентного состояния, а 5,7-дибром-8-оксихинолин окисляется до пиридин-2,3-дикарбоновой (хинолиновой) кислоты. [c.173]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Предложен полумикрометод идентификации спиртов, основанный на образовании красной окраски при растворении в спирте продукта взаимодействия. 5,7-дихлор-2-метил-8-оксихинолина с пятивалентным ванадием. Окрашивание отмечено для 30 одноатодгаых спиртов, 8 двухатомных гликолей, метилового и уксусного эфиров, карбо-ваксов 1.500 и 6000, глицерина. Однако цветную реакцию дают и другие классы веш,еств — кетоны, альдегиды, эфиры, кислоты и амиды. Метод применим для капельных проб [4]. [c.335]

    Весовые методы. Данные методы основаны на осаждении ванадия в виде труднорастворимых соединений метаванадата аммония NH4VO3 — белого цвета, метаванадата ртути HgVOs — желтого цвета, комплексного соединения с купфероном — красного цвета, комплексного соединения с оксихинолином — желтого цвета и др. Все эти соединения после прокаливания (900—950°) образуют пяти-окись ванадия оранжево-красного цвета. Ванадий можно осаждать в виде свинцовой соли РЬз(У04)2, которая после прокаливания переходит в PbgVaO,. Однако все эти методы требуют отделения ванадия от ряда других элементов, мешающих осаждению. Поэтому применение весовых методов определения ванадия в условиях контроля производства практически используют редко. [c.339]

    Следовательно, главной проблемой в области кинетических методов анализа остается проблема дальнейшего повышения их чувствительности. Основным средством для зешения этой проблемы является применение активаторов 105—107]. Возможности, открываемые в этой области активированием, можно продемонстрировать на нескольких примерах. Так, по каталитическому действию ванадияСУ) в реакции окисления п-фенетидина галогенатами можно определять до 1 мкг этого элемента [108]. Применение в этой реакции в качестве активатора фенола понижает минимально определяемое количество ванадия в 10 раз [109], производных 8-оксихинолина — в 400 раз [ПО, 111], а сульфосалициловой кислоты — в 2000 раз [112, 113]. [c.264]

    Успешно применяют прямой эмиссионный метод анализа природных битумов. Навеску битума помещают в кратер электрода, содержащего 20 мг буфера (10% хлорида натрия в угольном порошке). Для определения ванадия, никеля и меди в электрод вводят 3 адг битума, а для определения молибдена и марганца — 20 мг. Эталоны готовят путем пропитки угольного порошка рассчитанным количеством растворов о-оксихинолина-та ванадия и меди и раствором диметилглиоксимата никеля в хлороформе. Для определения молибдена и марганца эталонами служат битумы, обогащенные этими металлами. Предварительно битум деметаллизируют экстракцией смесью серной кислоты и раствора роданида калия, затем в него вводят расчетные количества о-оксихинолинатов молибдена и марганца. Спектры возбуждают в дуге переменного тока силой 4—о А, экспозиция 120 с. Аналитические линии V 318,5 нм, N1 305,0 нм, Си 324,8 нм, Мо 313,2 нм, Мп 280,1 нм [285]. [c.186]

    Оксихинолип реагирует с солями металлов с образованием соединений, в которых водород гидроксильной группы замещен на металл, как, например, Mg( 9HeNO)2 или Ali gHeNOjig. Осаждение проводится из слабокислых или щелочных растворов, в зависимости от преследуемой цели. Количественные методы осаждения разработаны для меди, висмута, кадмия, ванадия (V), алюминия и цинка, которые выделяются из уксуснокислых растворов, содержащих ацетат, и для магния, осаждающегося из аммиачного раствора Ряд других элементов также осаждается оксихинолином более или менее количественно. Так, например, молибден, серебро, ртуть (II), свинец, сурьма (III) и сурьма (V), ванадий (IV) и ванадий (V), уран, железо (И) и железо (III), титан, цирконий, тантал, ниобий, марганец, никель и кобальт выделяются из уксуснокислых рас- [c.148]

    Комнлексообразующее действие комплексона III успешно используется в аналитической практике для устранения-влияния посторонних элементов. Так, нанример, способность двух- и трехвалентных металлов образовывать прочные комплексные соединения с комплексоном III дает возможность осаждать уран и титан а также и бериллий (который в отличие от большинства двухвалентных металлов не образует комплексных соединений с комплексоном III) аммиаком в присутствии многих элементов, в том числе алюминия и железа, что имеет весьма важное практическое значение. Описано также применение комплексона III при определении вольфрама и молибдена осаждением оксихинолином в ацетатной среде. Установлено, что в этих условиях осаждаются только молибден, вольфрам, уран и ванадий (V) [c.158]


Смотреть страницы где упоминается термин оксихинолином ванадия: [c.119]    [c.163]    [c.164]    [c.172]    [c.329]    [c.155]    [c.339]    [c.352]    [c.348]   
Методы химического анализа железных, титаномагнетитовых и хромовых руд (1966) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Оксихинолин



© 2024 chem21.info Реклама на сайте