Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксилирование механизм

    У зеленых серобактерий обнаружен циклический механизм фиксации СО2, в основе которого лежат реакции восстановительного карбоксилирования органических кислот. Он получил название восстановительного ЦТК, или цикла Арнона (рис. 76). В этом цикле углекислота фиксируется в четырех ферментативных реакциях, две из которых идут при участии фотохимически восстановленного ферредоксина, а одна — таким же путем образованного НАД Н2. В результате одного оборота цикла из 4 молекул СО2, 10 [Н] с использованием энергии (3 молекулы АТФ) синтезируется молекула ЩУК — конечный продукт цикла. [c.293]


    В последнее время явления адсорбции и ионного обмена используют для создания новых хроматографических систем на бумаге с адсорбционным и ионообменным механизмами. Например, ионообменные свойства бумаги усиливают специальной обработкой ее [6] (окислением, карбоксилированием) непосредственно пропиткой бумаги ионообменными смолами [7] или неорганическими ионообменниками фосфатом циркония [8] и т. д. [c.359]

    Вероятно, все растения фиксируют углекислый газ, но в некоторых суккулентах этот процесс протекает более интенсивно. В таких растениях обнаружены суточные колебания кислотности и содержания углеводов (фиг. 47). Повышение кислотности почти исключительно обусловлено накоплением яблочной кислоты. Можно было бы считать, что причиной этого служат реакции, рассмотренные в предыдущем разделе. Однако недавно проведенные опыты показали, что включение меченого углекислого газа в яблочную кислоту даст распределение метки, специфичное для суккулентных растений. Механизмы карбоксилирования, рассмотренные в предыдущем разделе, предполагают фиксацию меченого углекислого [c.200]

    Необходимы какие-то механизмы для того, чтобы скорость карбоксилирования рибулозодифосфата равнялась скорости карбоксилирования фосфоенолпировиноградной кислоты. [c.202]

    У животных и бактерий обнаружены два добавочных механизма окисления пропионовой кислоты. У животных основным путем окисления пропионовой кислоты служит карбоксилирование [13]. [c.317]

    Происходящие в процессе реакции превращения означают, что карбонильная группа биотина служит акцептором протонов в одном случае и донором протонов в другом. Более вероятный механизм предполагает наличие внещнего основания. Таким образом, альтернативой согласованному механизму служит ступенчатый процесс, включающий отщепление а-протона с последующим карбоксилированием. Чтобы показать возможность такого механизма, было исследовано [346] действие пропионил-СоА-карбо- [c.484]

    При поглощении хлоропластами СО2, меченного С, первым органическим соединением, в котором обнаруживается радиоактивная метка, оказывается 3-фосфоглицерат. Две молекулы этого соединения образуются под действием присутствующего в хлоронластах фермента рибулозо-1,5-дифосфат — карбоксилазы (в листьях шпината его содержание составляет 16% общего количества белка). Этот фермент содержится в зеленых растениях, а также в пурпурных и зеленых бактериях. Реакция, катализируемая данным ферментом, отличается от других реакций карбоксилирования тем, что продукт карбоксилирования расщепляется тем же самым ферментом. Структура субстрата, к которому фермент проявляет абсолютную специфичность, не допускает образования наблюдаемого продукта путем прямого р-карбоксилирования. На основании косвенных доказательств было сделано предположение о реализации следующего механизма  [c.175]


    РибуЛозодифосфат превращается в енол (или, возможно, в 3-кетосоеди-нение). При отщеплении протона от 3-ОН-группы образуется енолят-янион, необходимый для осуществления стадии карбоксилирования. Первым продуктом карбоксилирования [второе промежуточное соединение, поставленное в уравнении (7-81) в скобки] является р-кетокис-лота. Было показано [166], что она подвергается ферментативному гидролизу в соответствии с уравнением (7-61). В пользу этого механизма свидетельствует тот факт, что карбоновая кислота, имеющая следующее строение  [c.175]

    Метилмалонильный путь (рис. 9-6) начинается с биотин- и АТР-зависимого карбоксилирования пропионата. Образующийся при этом (5)-метилмалонил-СоА изомеризуется в (7 )-метилмалонил-СоА (читатель мог бы указать простой механизм этой реакции), после чего ме-тилмалонил-СоА превращается в сукцинил-СоА — на этой стадии роль кофермента играет витамин B12 (табл. 8-6). Сукцинил-СоА превращается в свободный сукцинат (образующийся при этом GTP компенсирует затраченный вначале АТР). Сукцинат путем р-окисления превращается в оксалоацетат, который декарбоксилируется в пируват (фактически удаляется двуокись углерода, присоединившаяся на начальной стадии). Пируват путем окислительного декарбоксилирования превращается в ацетил-СоА. Можно задать естественный вопрос зачем природе понадобилось столь усложнять путь, который мог бы быть намного более прямым Ответить на этот вопрос трудно, однако некоторые соображения по этому поводу все же имеются. [c.334]

    Эти два механизма имеют очень важное значение для удлинения цепи при биосинтезе. Однако имеются и другие механизмы. Например, глицин (карбоксилированный метиламин) способен вступать в присутствии пиридоксальфосфата в реакцию конденсации с такими соединениями, как сукцинил-СоА [уравнение (8-20)], сопровождаемую декарбоксилированием, в результате которой происходит удлинение углеродной цепи и одновременно введение аминогруппы. Аналогично серин (карбоксилированный этаноламин) в биосинтезе сфингозина конденсируется с пальмитоил-СоА [уравнение (8-21)]. Фосфатидилсерин декарбоксилируется до фосфатидилэтаноламина на последней стадии синтеза этого фосфолипида (рис. 12-8). [c.488]

    Методики, принятые в этом синтезе, были использованы при изучении механизма образования З-окси-2-нафтойной кислоты карбоксилированием -нафтолята натрия с применением метода меченых атомов. Полученные результаты подтверждают механизм, предложенный Карпухиным и Кузидом [1], и не соответствуют механизму, предложенному Калкотом [2], см. также работы Кольбе [3] и Шмитта [4]. [c.423]

    Вместе с тем многообразие и большое своеобразие органических реакций приводит к необходимости и целесообразности их классификации по другим признакам 1) по электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции замешения или присоединения) 2) по изменению числа частиц в ходе реакции (замещение, присоединение, диссоциация, ассоциация) 3) по частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, формилирование, карбоксилирование и декарбоксилирование, энолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.) 4) по механизмам элементарных стадий реакций (нуклеофильное замещение 8м, электрофильное замещение 8е, свободнорадикальное замещение 8к, парное отщепление, или элиминирование Ё, присоединение Ас1е и Ас1к и т. д.). [c.184]

    Несмотря на значительное число работ, посвященных де-карбоксилированию органических кислот, лишь в немногих из них упоминается о механизме декарбоксилирования в присутст,-вии металлбромидных катализаторов при 150—250 °С в процессе окисления изомеров ксилола. Применительно к процессу жидкофазного каталитического окисления п-ксилола с использованием в качестве катализатора солей кобальта, марганца, никеля, хрома и брома- в условиях повышенных температур 0 0—260°С) в литературе практически нет сообщений о механизме и кинетике декарбоксилирования уксусной кислоты. [c.29]

    Энергетическая эффективность пропионовокислого брожения связана также с выработкой пропионовыми бактериями новых метаболических способностей реакций транскарбоксилирования и перегруппировки, участия в процессе КоА-производных. Образование дикарбоновой кислоты из пировиноградной с использованием механизма транскарбоксилирования вместо прямого карбоксилирования пирувата позволяет избежать дополнительных энергетических затрат на этом этапе брожения. Все это вместе взятое позволяет рассматривать пропионовокислое брожение как более совершенный из рассмотренных до сих пор способов получения энергии в анаэробных условиях. [c.230]

    Витамин К является одним из регуляторов системы свертывания крови. Одним из этапов многостадийного процесса формирования тромба является образование белка протромбина, который затем превращается в тромбин. Механизм этого превращения зависит от способности протромбина связывать ионы Са " при помощи остатков у-карбоксиглутаминовой кислоты. Карбоксилирование последней в составе белка осуществляется микросомальной карбоксилазой, коферментом которой является 2,3-эпоксид — окисленная форма витамина К. Окисление протекает за счет внедрения кислорода в положение 2,3-нафтохинона. [c.104]


    Химизм реакции обходного пути фосфорилирования пирувата приведен в табл. 20.1. Первая необратимая реакция глюконеогенеза катализируется мита-хондриальной пируваткарбоксилазой, которая содержит в качестве кофермента витамин Н (биотин). В митохондриях этот фермент катализирует АТФ-зави-симую реакцию карбоксилирования пирувата, в ходе которой образуется оксалоацетат. Для оксалоацетата внутренняя мембрана митохондрий непроницаема, и транспорт его в цитоплазму происходит с помощью малатного челночного механизма. Митохондриальная малатдегидрогеназа восстанавливает оксалоацетат до малата, который может выходить в цитоплазму. Затем уже цитоплазматическая малатдегидрогеназа окисляет малат до оксалоацетата для последующего участия в реакции, катализируемой фосфоеноилпируваткарбоксики- [c.273]

    Как видно из схемы, приведенной на рис. 23.18, если в клетки печени поступает большое количество глюкозы, в результате пируватдегидрогеназной реакции она превращается в пируват, карбоксилирование которого приводит к образованию оксалоацетата. Увеличение концентрации последнего усиливает транспорт ацетил-КоА с помощью цитратного механизма из матрикса митохондрий в цитоплазму Цитоплазматический цитрат активирует ацетил-КоА- [c.355]

    Механизм, предложенный Форстером, включает два варианта элиминирования. Один из них заключается в сольволизе ацетильного комплекса IV с образованием гидридного промежуточного соединения V и последующем восстановительном элиминировании иодида водорода. Аналогичный механизм предполагают для карбоксилирования алкилхлоридов на кобальтовых катализаторах [14]. Форстер обнаружил, что при карбонилировании безводного метилиодида с солью тетрафениларсония и ди-галогенкарбонилродия при низких температуре и давлении образуются измеримые количества ацетилиодида. Сообщалось [c.297]

    Согласно механизму этой реакции, предложенному Бухере-ром , последовательно образуются циангидрин (I), а-аминони-трил (II) и продукт его карбоксилирования (III)  [c.51]

    Стиллер получила данные, которые подтверждали существование такого двойного механизма карбоксилирования. После экспозиции в течение 15 сек она обнаружила в листьях ВгуорЬуИит меченую фосфоглицериновую кислоту. Листья ВгуорЬуИит подкармливали растворами различных меченых сахаров. Стиллер полагала, что наблюдаемое распределение метки в яблочной кис- [c.201]

    Реакция карбоксилирования арилэтил-1-хлорида катализируется по следующему механизму [167]  [c.124]

    Механизмы концентрирования СОг существуют у некоторых водорослей и ряда высших растений с С4-ТИПОМ фотосинтеза. Группа С4-растений включает несколько родов в основном это тропические растения. К их числу принадлежат такие коммерчески важные культуры, как сахарный тростник, кукуруза и сорго, а также тропическая слоновья трава (Рептзе ит). В опытах с э врми растениями была зарегистрирована максимальная скорость образования сухого вещества у них имеется дополнительный цикл карбоксилирования- (С путь), который работает,, как насос, перекачивающий СО2 из атмосферы к месту восстановительной реассимиляции за счет ВПФ-цикла в клетках об-кладки проводящих пучков. Вначале углекислый газ атмосферы ассимилируется с образованием четырехуглеродных кислот (ма-лата и аспартата) в наружном (мезофильном) слое фотосинтезирующей ткани. Эти кислоты переносятся в слой клеток об- [c.46]

    Цикл трикарбоновых кислот не только выполняет функцию конечного окисления органических веществ, но и обеспечивает процессы биосинтеза различными предшественниками, такими как 2-оксоглутарат, оксалоацетат и сукцинат. Отсутствие этих кислот привело бы к нехватке оксалоацетата, который служит акцептором для ацетил-СоА, и тем самым к нарушению цикла. Восполнение потерь промежуточных продуктов цикла трикарбоновых кислот-функция так называемых анапле-ротических реакций. Важнейший механизм обеспечения цикла С4-дикарбоновыми кислотами состоит в карбоксилировании пирувата и фосфоенолпирувата (С3 + С - С ). Эти реакции будут подробнее рассмотрены позже (разд. 7.5). [c.234]

    Другие механизмы. Помимо пути присоединения —отщепления с промежуточным образованием аренониевых катионов возможен механизм отщепления присоединения с промежуточным генерированием. карбанионов. Так протекает изомеризация солей ароматических карбоновых кислот, напрцмер фталата калия (65) в терефталат калия (67) при высокой температуре в атмосфере диоксида углерода. На первой стадии отщепляет-, ся молекула СОз и возникает карбанион (66), который подвергается электрофильному карбоксилированию [278]  [c.100]

    Необходимо подчеркнуть, что тяжелые формы кетонемии при диабете,, сопровождающиеся развитием ацидоза и возникновением комы, конечно, нельзя рассматривать как компенсаторное приспособление. В этом случае мы, несомненно, имеем дело с патологическим нарушением обменных процессов. Механизм их возникновения можно (хотя бы отчасти) объяснить следующим образом при недостаточном окислении углеводов и усиленном распаде жиров и белков в организме появляется избыток промежуточных и конечных продуктов жирового и азотистого обмена, в частности аммонийных солей. Но аммиак прерывает лимоннокислый цикл Кребса, устраняя кетоглютаровую кислоту путем аминирования ее в глютаминовую кислоту. Вследствие этого в ткаиях нарушается в той или иной степени способность к окислению пировиноградной и уксусной кислот (точнее ацетилкоэнзима А), обмен которых переключается на образование ацетоуксусной кислоты (см. стр. 292). 1%)оме того, вероятное нарушение карбоксилирования пировиноградной кислоты ограничивает синтез щавелевоуксусной кислоты и делает малоэффективным цикл трикарбоновых кислот. Это также может быть одной из причин развития тяжелого ацидоза при диабете. [c.300]

    Взаимодействие натриймалонового эфира с галогеноалкилами по нуклеофильному механизму (нуклеофильный реагент — карбанион) приводит к алкилмалоновым эфирам, после гидролиза и де-карбоксилирования которых образуются монокарбоновые кислоты. Моноалкилмалоновый эфир может быть через натриевое производное вторично введен в реакцию с галогеноалкилами  [c.177]

    Напишите стадийный механизм происходящего под действием фермента де-карбоксилирования ацетоуксусной кислоты, по возможности точно определив характер связи между субстратом и ферментом. Покажите, как на основе этого механизма можно объяснить ингибирование цианистым водородом и результаты реакций с боргидридом. Используйте при ответе обсуждение легкости декарбок-силирования различных кислот, приведенное в 1, разд. 16-7, и определите, какими структурными особенностями должен обладать активный участок для того, чтобы декарбоксилирование в комплексе фермент — субстрат могло осуществляться более эффективно, чем некатализируомое декарбоксилирование ацетоуксусной кислоты. [c.145]

    В предыдущел разделе мы видели, что, несмотря на все затруднения, встреченные в попытках осуществить обращение декарбоксилирования карбоновых кислот в нейтральных средах in vitro, карбоксилирование представляется все же наиболее вероятным механизмом фиксации двуокиси углерода при фотосинтезе. В дополнение к прямым фактическим данным в пользу этой теории, подученным в опытах с радиоактивным углеродом, упомянем еще некоторые косвенные доказательства, даваемые во все возрастающем разнообразии нефотохимических процессов обмена веществ. В этих процессах двуокись углерода играет неожиданно активную роль, и они лучше всего объясняются вхождением двуокиси углерода в карбоксильные группы. [c.216]


Смотреть страницы где упоминается термин Карбоксилирование механизм: [c.471]    [c.472]    [c.479]    [c.482]    [c.483]    [c.483]    [c.283]    [c.215]    [c.129]    [c.258]    [c.196]    [c.196]    [c.390]    [c.372]    [c.219]    [c.21]    [c.202]    [c.194]   
Биохимия Том 3 (1980) -- [ c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксилирование



© 2025 chem21.info Реклама на сайте