Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оже-спектроскопия рентгеновская спектроскопия

    На основании исследований состава и структуры продуктов коррозии бронзы методами элементного анализа, инфракрасной, ультрафиолетовой и рентгеновской спектроскопии можно с определенной достоверностью представить следующую схему образования продуктов коррозии. [c.290]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]


    По диапазонам изучаемых длин волн электромагнитного излучения различают гамма-спектроскопию, рентгеновскую, оптическую и радиоспектроскопию. Оптическая спектроскопия в свою очередь подразделяется на спектроскопию видимого излучения, инфракрасную и ультрафиолетовую. [c.170]

    Вся группа методов фотоэлектронной спектроскопии, как и методы рентгеновской спектроскопии (РФА и абсорбционной), могут [c.151]

    Для изучения поверхности электродов и явлений адсорбции используют оптические методы. Часть этих методов предназначена для исследования поверхностного слоя электродов, погруженных в раствор электролита и включенных в электрохимическую цепь. Таким образом получается информация о состоянии границы раздела фаз при заданном составе раствора и заданном потенциале электрода. К этим методам относятся эллипсометрический метод, а также методы обычного зеркального и неполного внутреннего отражения. Другая часть оптических методов изучения поверхности электродов требует удаления их из раствора, просушки и последующего исследования в глубоком вакууме. К этим методам относятся дифракция медленных электронов, Оже-спектроскопия, фотоэлектронная спектроскопия (рентгеновский микроанализ), сканирующая электронная микроскопия и некоторые другие методы. Эти методы дают информацию о микроструктуре поверхности твердых электродов, о химическом составе поверхностного слоя, изменение которого могло произойти в результате необратимой адсорбции тех или иных компонентов раствора, о составе и структуре возникших на поверхности окисных пленок. Однако для изучения обратимых адсорбционных явлений на электродах эти методы не подходят. [c.80]

    Помимо целей химического анализа, применение метода сыграло большую роль в исследовании самых различных свойств вещества. Так, благодаря рентгеновской спектроскопии получены сведения о поведении и свойствах электронов в твердых телах. Именно анализ рентгеновских спектров, обусловленных электронными переходами с глубинных дискретных уровнен атомов на более удаленные орбиты, является наиболее прямым способом для изучения распределения энергетических уровней в валентной и проводящих зонах, дает возможность найти распределение между занятыми и свободными электронными уровнями в твердых телах. При изменении физического или химического состояний вещества наблюдаются небольшие смещения линий в спектрах отдельных элементов, которые позволяют судить о характере и изменении роли электронных орбиталей этих элементов при переходе в химически связанное состояние. Следует отметить, что возможности этого метода для исследования физико-химических свойств твердых тел далеко не исчерпаны и в настоящее время работа в этом направлении продолжается. [c.126]


    Принципиальная схема рентгеновского спектрометра. Первичное излучение рентгеновской трубки вызывает флуоресценцию элементов, входящих в состав пробы. Излучение флуоресценции проходит вдоль набора продольных плоскопараллельных пластин, падает на кристалл-анализатор и, отражаясь от него, разлагается в спектр. Отражающееся в различных направлениях излучение определенных длин волн регистрируется счетчиком, совмещенным с гониометром. Такая схема прибора основана на принципе рентгеновской дифрактометрии. Этот метод отличается от рентгеновской спектроскопии только тем, что в нем задаются длиной волны регистрируемого излучения, а строение кристалл-анализатора остается неизвестным. В рентгеновской же спектроскопии имеет место обратное. [c.204]

    Главное квантовое число п, по существу, эквивалентно квантовому числу п в теории Бора оно в основном определяет энергию электрона на данной орбитали и качественно размеры области пространства вблизи ядра, где движется электрон. Орбитали о одинаковыми п называются оболочками и имеют следующие обозначения (введенные в рентгеновской спектроскопии)  [c.54]

    Из значений энергетического сдвига АО можно вычислить эффективные заряды на атомах химических элементов в соединениях. А эффективные заряды однозначно характеризуют степень ионности химической связи. Для этого РЭ-спектроскопия имеет определенные преимущества перед рентгеновской спектроскопией, так как в первом случае с большой точностью определяется св по (VI.13), т. е. энергии АО. [c.185]

    Информацию о качественном составе исследуемого объекта можно получить также с помощью масс-спектроскопиа, рентгеновской спектроскопии и других методов анализа. [c.14]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    По диапазонам изучаемых волн электромагнитного излучения зазличают гамма-спектроскопию, рентгеновскую, оптическую и [c.140]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    За последние два десятилетия дифракционная рентгеновская спектроскопия достигла высокой степени совершенства. Этот метод был применен при изучении строения асфальтенов. К. Вил-лифордом [37] было показано, что асфальтены имеют лишь незначительные признаки кристаллического строения. Данные, приведенные К. Алексанианом и М. Луи [38], показали, что природные асфальтены, свободные от растворяющего действия смолистых компонентов, обнаруживают признаки кристаллического строения и незначительные признаки цепной ориентации. [c.231]

    Эмиссионные свойства углеродных нанотруб измерялись в вакуумной камере при давлении порядка 10 Па. Образцы демонстрируют ток эмиссии до 0.1 мА/мм . Заметный ток эмиссии возникает при приложенных полях от 1 кВ/мм. Эмиссионные свойства сильно зависят от состава вещества, метода получения и т.д. Таким образом, есть перспективы использования углеродных наноматериалов в качестве холодных катодов в рентгеновской спектроскопии. Была показана принципиальная возможность возбуждения ультрамягкой рентгеновской эмиссии с помощью полевого катода из материала, содержащего углеродные многослойные и однослойные нанотрубы. [c.84]


    Проведен синтез углеродных нанотруб мегодом термического газофазного разложения углеводородов. Структура нанотруб (размер, ориента11ия, дефектность, наличие примесей других элементов и т.д.) регулировалась изменением параметров синтеза (температура, исходные углеродсодержащие вещества, вид катализатора и т.д.). Проведено комплексное исследование полученных материалов методами электронной микроскопии, рентгеновской спектроскопии, фотоэлектронной спектроскопии и рентгеновской дифракции. [c.124]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    СПЕКТРОСКОПИЯ (спектр + греч. вкорео — смотрю) — область науки, изучающая спектры электромагнитного излучения, испускаемого, поглощаемого или рассеиваемого веществом. По диапазонам длин волн (А,) электромагнитного излучения различают радиоспектроскопию, оптическую С., инфракрасную С., видимую С., ультрафиолетовую С., рентгеновскую С., гамма-спектроскопию. Каждый атом или молекула имеют свой характерный спектр, благодаря чему можно изучать строение вещества. [c.234]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Источником монохроматического излучения обычно служит разряд в атмосфере гелия при низком давлении с йу = 21,22 эВ [линия Я. = 58,4 нм (584А)]. Кванты данной энергии выбивают электроны не только с ВЗАО, но и других, не очень глубоко лежащих АО, что позволяет измерять ПЙ с разных атомных орбиталей. Для определения ПИ с более глубоких АО используется особая ламти с разрядом в гелии с йу = 40,7 эВ [линия Х= 30,4 нм (304А)]. Для этих же целей используется и рентгеновское монохроматическое излучение (РЭС). В спектре каждому орбитальному ПИ отвечает свой пик. При ионизации с вырожденных АО интенсивность выше, так как вероятность ионизации возрастает (например, для атома азота она втрое выше с р-АО, чем с 5-АО). ФЭС и РЭС используются и для исследования молекул, где наряду с орбитальной энергией они дают сведения о колебательных состояниях молекул, их структуре и т. н. [к-7] и [к-39]. Метод ФЭС" (РЭр является мощным средством для изучения электронной структуры вещества — атомов, молекул, твердых тел. Особое значение он приобрел для исследования химической связи и для элементного химического анализа —электронная спектроскопия для химического анализа (ЭСХА) [к-41]. [c.59]

    Величина, обратная длине волны наблюдаемой рентгеновской линии, пропорциональна квадрату атомного номера элемента. Этот закон, лежащий в основе рентгеновской спектроскопии закон Мозли), одновременно является подтверждением современной трак-Таблица 5.6 товки периодической системы элемен-номЕнклАТУРА ЛИНИЙ РЕНТГЕНОВСКИХ -[-ов. Влагодаоя этой закономерности [c.200]

    Методом рентгеновской спектроскопии можно анализировать монолитные или порошкообразные твердые пробы, жидкие вещества и иногда газы. Твердые пробы можно анализировать непосредственно. Для проведения количественного анализа их разбавляют введением подходящих веществ (наполнителей) (разд. 5.2.2.4) или добавлением внутреннего стандарта. Можно также готовить таблетки сплавлением с В2О3. В таких таблетках частицы вещества пробы достаточно малы (-<50 мкм) и равномерно распределяются по их толщине. Металлы следует протравить и тщательно отполировать (максимальная глубина трещин 100 мкм). При более глубоких трещинах — особенно если они будут перпендикулярны падающему и испускаемому излучениям — интенсивность флуоресценции уменьшается. Неоднородные твердые пробы гомогенизируют растворением. В качестве растворителей используют кислоты, воду или органические растворители, такие, как ацетон, ксилол. Матричный эффект с разбавлением уменьшается. Руководствуясь аналогичными соображениями, готовят тонкие слои толщиной приблизительно 1000—2000 А. При этом взаимное влияние элементов выражено еще мало и калибровочный график — почти прямая линия. [c.207]

    Гафний был открыт на 150 лет позже, чем 2г, хотя ках<дый цирконийсодержащий минерал, содержит около 2% Н1. Гафний был обнаружен методом рентгеновской спектроскопии при следующих обстоятельствах. В 1923 г. в Копенгагене венгр Хевешн (он вместе с Напетом разработал метод меченых атомов) и датчанин Костер пытались [c.93]

    Формула (3.51) совпадает с формулой (2.41) для водородоподобного атома при условии определения (2—5экр) как эффективного заряда ядра и п как эффективного главного квантового числа. Константы экранирования 5экр для элементов второго периода до атома фтора были вычислены Зенером. Слэтер аппроксимировал 5экр и п для всех элементов таблицы Менделеева так, чтобы эти значения хорошо согласовывались с расчетами Зенера и экспериментальными данными по рентгеновской спектроскопии атома. [c.63]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Рентгеновская спектроскопия. Рентгеновское излучение имеет ту же электромагнитную природу, что и световое излучение, у-излучение и радиоволны. Рентгеновские спектры получают при бомбардировке вещества, находящегося непосредственно на аноде рентгеновской трубки, электронами высокой энергии, испускаемыми катодом (рис. 80). Получаемый ренгеновский спектр называется первичным. Вторичный рентгеновский спектр получается при облу- [c.181]

    Одним из основных современных научных направлений использования рентгеновской спектроскопии является экспериментальное изучение степени ионности ковалентной связи. Ковалентная связь между неодинаковыми атомами поляризована (см. гл. IV), в результате чего связывающее электронное облако смещено в сторону более электроотрицательного атома. Последний приобретает отрицательный эффективный заряд и функционирует как аннонообра-зователь. Отрицательный эффективный заряд уменьшает заряд атомного ядра, и все энергетические уровни, в том числе уровни внутренних электронов (которым обязаны своим происхождением рентгеновские спектры), сдвигаются в сторону меньших энергий, т. е. в длинноволновую сторону. С партнером по связи (катиоыооб-разователем) происходит все наоборот. Благодаря его положительному эффективному заряду положительный заряд ядра увеличивается, в результате чего электронные оболочки стягиваются к ядру и энергетические уровни атома сдвигаются в коротковолновую сторону, т. е. их энергии возрастают. Поведение валентных электронов, [c.182]

    С помощью РЭ-спектров точно устанавливаются энергии НМО внутренних электронов, следовательно, определяется порядок заселения этих орбиталей, имеющих очень важное значение при правильном построении энергетических диаграмм молекул. Кроме того, РЭ-спектроскопия, как и рентгеновская спектроскопия, дает возможность исследовать степень ионности ковалентной связи. Образование химической связи между неодинаковыми атомами приводит к асимметрии результирующего электронного облака, которая изменяет эффективные заряды атомных остовов, в результате чего происходит сдвиг энергий АО. Только в методе РЭ-спектро-скопип энергетические сдвиги внутренних АО изучаются по Ь кин, испускаемых исследуемым веществом электронов. В табл. 16 приведены сдвиги энергий АО для кремния, алюминия, углерода и фосфора в некоторых твердых соединениях этих элементов по данным РЭ-спектроскопии. Положительные сдвиги соответствуют возникновению положительного эффективного заряда на атомах элемента, а сдвиги с отрицательным знаком (в сторону уменьшения энергии) свидетельствуют возникновению отрицательного эффективного заряда. [c.185]


Библиография для Оже-спектроскопия рентгеновская спектроскопия: [c.120]   
Смотреть страницы где упоминается термин Оже-спектроскопия рентгеновская спектроскопия: [c.150]    [c.148]    [c.141]    [c.450]    [c.34]    [c.24]    [c.171]    [c.42]    [c.149]    [c.170]    [c.228]    [c.200]    [c.246]    [c.85]    [c.69]    [c.69]    [c.182]   
Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия рентгеновская



© 2025 chem21.info Реклама на сайте