Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент щелочных растворах

    Наиболее полные экспериментальные исследования процесса массообмена в полых распылительных скрубберах было проведено Фиалковым с соавторами [363, 367-371]. Целью исследований был подбор типа форсунок и их расположение в колонне, величина плотности орошения и скорости воздуха при условии ограниченного гидравлического сопротивления аппарата, а также получение эмпирической формулы для расчета скруббера. Проводилась очистка воздуха от HF, СЬ, SOj водой, содовым и щелочными растворами и растворами кислот. При обработке экспериментальных данных определялся объемный коэффициент массопередачи -К а эквивалентного колонного аппарата, работающего в режиме идеального вытеснения при постоянстве по высоте колонны. При этом предполагалось, что равновесная концентрация с на границе раздела газ—жидкость равна нулю. Это допущение применимо лишь для очень хорошо растворимых газов. В соответствии с уравнением (5.4) экспериментальное значение объемного коэффициента массопередачи рассчитьшалось по формуле [c.250]


    По некоторым методам повышения КНО специалисты и ученые еще не пришли к единому мнению о превалирующих элементах в механизме нефтеотдачи и о важнейших влияющих показателях литологического строения. К таким методам можно отнести закачку полимерных и щелочных растворов и применение мицеллярных систем. Эти методы оказывают влияние на увеличение коэффициента вытеснения и коэффициента охвата, однако степень влияния литологической неоднородности пластов и коллектора при этом пока до конца не ясна, [c.32]

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]

    Значение а при выделении водорода меняется в широких пределах — от 0,1 В у Р1 до 1,6 В у Нд коэффициент Ь почти у всех металлов, кроме платины в кислых и ртути в щелочных растворах, близок к 0,12. Все металлы с Ь 0,12 обладают высоким перенапряжением. [c.297]

    Некоторые металлы также растворяются в щелочном растворе с выделением водорода, хотя в этих условиях концентрация ионов водорода очень невелика в 1 н. едком натре (pH 14) она составляет Ю моль/л. Если не учитывать влияния коэффициента активности, ен + /Н2 = —0,83 В. Однако этот потенциал достаточно положителен для того, чтобы окислить такие металлы, как алюминий и цинк. Окислительно-восстановительной реакции благоприятствует образование гидроксо-комплекса  [c.418]

    Кривая зависимости Дф = Аф(рН), отвечающая уравнению (X. 54), должна бы состоять из трех линейных участков с угловыми коэффициентами — О, — /2 и 0. Экспериментальная зависимость (рис. X. 6) не согласуется с теоретической. В области pH = О — 8 наблюдается хорошо выраженный 1-й линейный участок с угловым коэффициентом — , совпадающий с теоретическим. В более щелочной области (pH = 9,8—12,3) прослеживается 2-й линейный участок, наклон которого меньше теоретического (—0,45 д). При pH > 12,3 формируется 3-й участок, угловой коэффициент которого равен — й, хотя согласно (X. 54) он должен быть равен 0. Наблюдаемый вид экспериментальной кривой и ее отличие от теоретической являются следствием необратимых превращений в системе хинон — гидрохинон в щелочных растворах. В кислых и нейтральных растворах система обратима. [c.613]


    Действие стеклянного электрода можно объяснить, например, при помощи ионообменной теории, предложенной Б. П. Никольским между поверхностным слоем мембраны и раствором, в который погружается электрод, происходит обмен ионами. Стекло отдает катионы Ма+, получая взамен Н+, в результате устанавливается равновесие, определяемое концентрацией этих ионов в стекле и растворе и коэффициентом их распределения в этих двух фазах. В кислых растворах ионы N3 - в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ыа+ электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислите.1ей и восстановителей, солей и т. п. Стеклянным электродом можно пользоваться в большом интервале значений pH —от —2 до 12. Свойства мембран у [c.66]

    Повышение температурного коэффициента и напряжения на электролизере при температурах выше 105°С связано с ростом газонаполнения. Электролиз при более высоких температурах щелочных растворов проводят при повышенных давлениях. [c.128]

    Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства. [c.88]

    Условие (VI. 37) - условие равенства летучести СО, в газовой и водной фазах, в которых закон Генри выполняется в отношении недис-социированной части условие (VI. 38) определяет равновесие реакции диссоциации угольной кислоты первой степени в пренебрежении отклонения коэффициентов активности от единицы условие (VI. 39) — постоянство ионного произведения воды и условие (VI. 40) — условие электронейтральности раствора. В этом условии, учитывая щелочность раствора, можно пренебречь значением П1 . Из уравнений (VI. 37) — (VI. 40) заключаем, что для 25 С и давления 2,5 МПа содержание всех форм растворенного диоксида углерода в децинормальном растворе МаОН будет приблизительно на 15% больше, чем в чистой воде при тех же температуре и давлении. [c.128]

    В формулу (VII. 23) входит кинематическая вязкость. Эта величина с повышением концентрации раствора увеличивается по крутой гиперболе, поэтому расчет коэффициента теплоотдачи по средней концентрации приводит часто к грубым ошибкам. При сгущении солевых и щелочных растворов происходит кристаллизация, но при сгущении пищевых продуктов с увеличением концентрации сухих веществ раствор становится тягучим. Ниже на примерах дадим анализ изменения коэффициента теплоотдачи с увеличением концентрации растворов. [c.232]

    Соединения со спиртами. Эти соединения изучены мало. Некоторое аналитическое значение имеют окрашенные глицерат-ные комплексы двух- и трехвалентного кобальта, так как их можно использовать для фотометрического определения кобальта. Комплексы устойчивы в щелочных растворах, причем максимум интенсивности окраски достигается при 5 N концентрации едкого натра. Окраска устойчива во времени. Максимумы светопоглощения комплексов двух- и трехвалентного кобальта находятся соответственно при 608 и 436 ммк, а молярные коэффициенты поглощения равны 250 и 300 [94]. [c.27]


    Такими условиями являются применение слабощелочных электролитов (pH = 9,5—10,5) определенного состава, а также введение в электролит ингибиторов коррозии. Хорошие результаты получаются, например, в электролите, содержащем 250 г/л MgBг2 и 0,2 г/л Ь12Сг04. В сильно щелочных растворах Mg пассивируется настолько сильно, что перестает работать как активный электрод. Потенциал электрода из сплава Mg -l%А14-0,5в растворе MgBr2 на 0,2—0,4 в отрицательнее потенциала цинкового электрода. Коэффициент использования Mg в элементах в лучшем случае не превышает 66,6% [21], а обычно значительно меньше, но и при этом весовой расход магния на 1 а-ч ниже расхода цинка. Магниевые электроды в солевых растворах проявляют отрицательный дифференц-эффект, т. е. при увеличении плотности тока разряда они активируются и начинают более сильно корродировать с выделением водорода. Потенциал их при этом становится более отрицательным. [c.556]

    В настоящее время достаточно хорошо известно большое количество методов увеличения коэффициента охвата пласта воздействием, таких как закачка загущенной полимерами воды, пены, периодическая закачка в пласт реагентов, понижающих проницаемость отдельных высокопроницаемых промытых вытесняющим агентом пропластков, силикатно-щелочных растворов (СЩР), полимердисперсных систем (НДС), а также разнообразных гелеобразующих в пластовых условиях композиций химреагентов [3, 23, 32, 33, 34, 35, 36, 37, 38, 39 и др.]. [c.47]

    Уравнение (VI-112) по исследованиям Черткова [209] применимо и к другим щелочным растворам, в частности, к растворам сульфит-бисульфита аммония (при рН б). Опыты проводились в башнях диаметрами 0,8 и 1 м [209], а также в промышленном абсорбере диаметром 6 м [210]. Все эти аппараты были насажены кольцами размером 50 мм в укладку, причем имелись три последовательно соединенные ступени абсорбции. Объемный коэффициент массопередачи при скорости газа 1 —1,3 м/сек и плотности орошения 2—4 м/ч составлял около 60 кмоль-м -ч -бар . Было установлено, что Кро возрастал с увеличением концентрации NHg в растворе (Сд) и уменьшался с повышением в нем отношения so . Анализ указанных исследований показал [209], что с повышением отношения sOj/ b (в частности, в первых ступенях абсорбции) в соответствии с уменьшением pH раствора возрастает доля сопротивления жидкой фазы, что и приводит к снижению К.ри-Это снижение можно определить, исходя из полученной при проведении опытов в трубке с орошаемыми стенками зависимости [211], по которой Кр пропорционален химической емкости раствора в степени 0,16. [c.478]

    Выбор системы очистки в большой мере определяется типом и распределением меркаптанов в бензине или лигроине. Низкомолекулярные меркаптаны легче экстрагируются щелочными растворами, чем высокомолекулярные [41 ]. Полнота экстракции значительно улучшается добавкой различных веществ, повышающих растворимость, например изомасляной кислоты [87], алкилфенолов [73], метанола [32], крезолов [53] и нафтеновых кислот. Коэффициенты экстракции меркаптанов нормального строения тремя очистными растворами приведены в табл. 4. [c.102]

    Величина тока саморастворения в 3 %-ном растворе Na I составляет 0,25 мА/см , в 25 %-ном растворе Na I 0,33 мА/см , а в щелочном растворе 0,39 мА/см . На основании этих результатов можно сделать заключение, что соленасыщенный и щелочной растворы имеют повышенную активность по отношению к сплаву Д16Т. Коэффициент ингибирования коррозии определяли по формуле = ( — i. ) 100 %Ц , где и /. — ток саморастворения соответственно в растворе без ингибитора и с [c.113]

    Влияние концентрации щавелевой кислоты на полноту дезактивации в диапазоне 0,5—5,0% при постоянной концентрации щелочного раствора (NaOH — 5%, КМпОд— 0,5%) для двух циклов дезактивации представлено в табл. 15-9. Снижение коэффициента дезактивации с увеличением концентраций щавелевой кислоты более 3% связано, по-видимому, с образованием нерастворимых оксалатов двухвалентного железа и их осаждением на участках чистого металла. Поэтому концентрации щавелевой кислоты следует принимать в пределах 1-3%. [c.154]

    Выделение рения экстракцией. Для экстракции из щелочных растворов могут быть использованы азотсодержащие растворители, например, пиридин, и кетоны, например метилэтил-кетон. Спирты, кетоны, ТБФ и анилин экстрагируют рений из нейтральных растворов, но коэффициенты распределения слишком малы для практического применения этого процесса. Из кислых растворов рений экстрагируется спиртами, например изоамиловым, кетонами, а также трибутилфосфатом и третичными аминами, например триоктиламином. ТБФ в отличие от других экстрагентов извлекает в органическую фазу также и молибден, что сильно снижает ценность процесса. Для реэкстракции рения пользуются обычно растворами аммиака (например 4 н.), что дает возможность далее выкристаллизовывать NH4Re04[89, с. 49]. [c.301]

    Применяются соли четвертичных аммониевых оснований, позволяющие извлекать рений как из кислых, так и из щелочных растворов. Например, описано применение хлористого трикаприламина для экстракции рения из щелочных растворов. Практически используется его 5%-ный раствор в керосине, к которому добавляется дециловый спирт, предотвращающий осаждение малорастворимого перрената амина. При pH 12 коэффициенты распределения рения и молибдена равны соответственно 140 и 0,03. Для реэкстракции предлагается хлорная кислота [98]. [c.302]

    Таким образом, у данного типа ионообменников наблюдается переход от анионного обмена в кислом растворе к катионному обмену в щелочном растворе. Подобного перехода не наблюдается, если М — элемент с низкой основностью, например кремний. Переход от одного типа обмена к другому происходит в определенном интервале значений pH, зависящем от основности иона металла. Отсутствие резкого перехода, отвечающего этому изменению (здесь уместно сравнение с изоэлектриче-ской точкой амфотерных ионов), и возможность в некоторых случаях одновременно и катионного и анионного обмена при определенном значении pH дают основание предполагать, что ионообменные группы неравноценны. Силикагель обладает только катионообменными свойствами [20] высокое электронное сродство у четырехвалентного иона кре.мния проявляется в форме очень слабой основности гидроксильных групп. Атомы водорода последних легко заменяются катионами даже в кислых растворах, особенно теми, которые легко координируются с кисло- родом. На рис. 24 представлено влияние pH раствора на величины коэффициентов распределения различных ионов при сорбции нх на силикагеле. Из этих данных следует, что указанные ионы можно разделить при определенных значениях pH раствора. Этот метод был использован [21] для разделения урана, плутония и трехвалентных металлов (продукты деления) из растворов, полученных при растворений облученрого урана кислоте. Значения коэффи- [c.119]

    Се + на фосфате циркония в Н+-форме. Для всех систем обмен подчиняется закону действия масс, однако если коэффициенты распределения следовых количеств уменьшаются с ростом температуры для щелочных металлов и в меньшей степени для шелочно-земельных элементов, то в случае редкоземельных элементов наблюдается обратный порядок изменения. Вычисленные из этих данных коэффициенты селективности и соответствующие коэффициенты активности растворов использовали для расчета термодинамических данных при предположении, что поведение твердой фазы идеальное. Результаты (табл. 29) показывают,- что если значения энтальпии и энтропии Для "обмена двух- и трехвалентных ионов сопоста- [c.158]

    Фотометрический метод с применением диметилглиоксима. Диме-тилглиоксимат никеля растворим в неполярных органических растворителях, а также в щелочных растворах. Молярный коэффициент погашения диметилглиоксимата никеля в хлороформе при Ятах = 360 нм равен 3,4-10 а при А, = 400 нм составляет 1,8-10 . [c.79]

    В щелочной среде в присутствии окислителя (персульфата аммония, иода или бромной воды) диметилглиокси-мат никеля растворяется и окрашивает раствор в красный цвет. Молярный коэффициент погашения диметилглиоксимата никеля в этих условиях составляет 1,3-10 при Ятах = = 470 нм (рис. 8). Высокий молярный коэффициент погашения растворов комплексного соединения никеля с диметилглиоксимом позволяет применять при фотометриче-ско г определении небольшие навески. Допустимы значительные количества меди и кобальта. [c.79]

    Различие молярных коэффициентов погашения растворов мышьяковомолибденовой сипи при одной и той н е длине волны, как уже указывалось выше, обусловлено рядом причин. Изменение концентрации минеральной кислоты при образовании и восстановлении молибдоарсената приводит к образованию молибденовой сини иного состава или неполному связыванию мышьяка в молибдоарсенат и т. п. Присутствие хлоридов щелочных металлов несколько уменьшает оптическую плотность растворов мышьяковомолибденовой сини и тем больше, чем выше их концентрация [47]. [c.58]

    Метод с применением парасульфамидобензоата серебра. При пропускании мышьяковистого водорода через щелочной раствор парасульфамидобензоата серебра в результате восстановления образуется желто-коричневый золь элементного серебра [580]. Максимум светопоглощения окрашенного золя находится при 420 нм. По чувствительности этот метод несколько превосходит метод с применением диэтилдитикарбамината серебра (молярный коэффициент погашения желто-коричневого золя серебра в расчете на мышьяк составляет от 1,8-10 до 5,1-10 в зависимости от условий проведения анализа) [581]. [c.73]

    Экстракция гидроперекиси щелочным раствором улучшается при уменьшении температуры (из-за уменьшения гидролиза ее соли). Ниже приведены коэффициенты распределения /Сраспр (рассчитанные как отношение соответствующих концентраций) гидроперекиси в щелочном растворе и в оксидате при различной температуре  [c.192]

    При окислении этилового спирта и гликолей щелочным раствором перманганата калия образуется щавелевая кислота [18]. Щавелевая кислота образуется также при нагреваний эгаленгликоля с 6 я. азотной кислотой [19], а при окислении этиленгдаколя смесью азотной (23%) и серной (34%) кислот в присутствии пятиокиси ванадия (0,003%) при 70 °С в течение 7 ч выход щавелевой кислоты достигает 91% (расход этиленгликоля составляет 0,6 к кг). Технологическая схема процесса аналогична принятой при окислении сахара, что позволяет осуществить его в действующих цехах. При кратковременной эксплуатации в одном из цехов были достигнуты следующие расходные коэффициенты в расчете на 1 т двухводной щавеле1 0й кислоты (в кг)  [c.30]


Смотреть страницы где упоминается термин Коэффициент щелочных растворах: [c.581]    [c.580]    [c.321]    [c.103]    [c.92]    [c.114]    [c.195]    [c.35]    [c.252]    [c.148]    [c.49]    [c.138]    [c.187]    [c.41]    [c.52]    [c.137]    [c.173]    [c.283]    [c.29]    [c.193]    [c.139]    [c.49]   
Очистка технических газов (1969) -- [ c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент растворов

Растворы щелочные



© 2025 chem21.info Реклама на сайте