Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор уксусной кислоты из метанол

    Еще в 1934 г. Б. Н. Долговым было отмечено, что при взаимодействии метанола с окисью углерода в присутствии катализаторов, имеющих основной характер, образуются сложные эфиры муравьиной кислоты, а в присутствии кислых катализаторов — уксусная кислота по уравнениям  [c.8]

    Первый том двухтомного издания, характеризующего современное состояние и экономику разнообразных каталитических производств в ряде зарубежных стран, посвящен описанию крупнотоннажных каталитических процессов гидрообработки нефтяного сырья, риформинга, производства полиэтилена и полипропилена, получения окисн этилена и дихлорэтана, карбонилирования метанола в уксусную кислоту, Особое внимание уделено переходу от лабораторного получения катализаторов к их промышленному производству, а также методам испытаний катализаторов в лабораторных и опытно-промышленных реакторах. Авторы — ведущие специалисты химических и нефтехимических фирм США. [c.5]


    I — метанол + катализатор 1 — окись углерода III — продукты синтеза IV — отработанный газ V — раствор катализатора V/ — метанол VII — кислота-сырец VIП — товарная уксусная кислота X — кубовый остаток на сжигание. [c.270]

    Особенно эффективны катализаторы на основе родия, промотированного иодом. В их присутствии синтез уксусной кислоты из метанола успешно протекает при сравнительно низких давлениях (3 ЛШа и ниже), причем достигается практически количественный выход уксусной кислоты ( --99% ). Катализатор может быть использован многократно. [c.271]

    Некоторое количество метанола можно заменить на диметиловый эфир - побочный продукт синтеза метанола. Источником катализатора является иодистый кобальт, который в условиях реакции превращается в гидрокарбонил кобальта и иодистый водород. Реакция протекает при температуре 250°С и давлении 650 атм. Как и следовало ожидать, в этих условиях метанол взаимодействует с уксусной кислотой с образованием метилацетата. Поэтому, чтобы регулировать концентрацию ме-тилацетата, в реакционную смесь вводят воду, В реакторе имеются примерно следующие концентрации упомянутых компонентов 30% метилацетата, 30% уксусной кислоты, 30% воды и 10% метанола. Метилацетат, катализатор и незначительное количество побочных продуктов возвращаются в реактор. Выход уксусной кислоты в расчете на метанол составляет 90%. [c.297]

    Конденсация метанола с окисью углерода под давлением протекает различно, в зависимости от функции катализатора над щелочными контактами получается главным образом метилформиат, над кислыми—уксусная кислота  [c.136]

    Теория промежуточного образования кислот оказалась несостоятельной по следующим причинам 1) метанол с окисью углерода над щелочными катализаторами образует не уксусную кислоту, а изомерный ей метилформиат (так же ведут себя и другие спирты) 2) восстановление низших кислот в спирты неосуществимо 3) принятый механизм не может объяснить образования первичных спиртов изостроения с СНд-группой у d-углеродного атома. [c.721]

    Карбоновые кислоты играют важную роль в производстве полимеров, идущих на изготовление искусственного волокна, пленок и красок. Уксусная кислота-одно из наиболее важных в промышленном отношении веществ с низкой молекулярной массой. Сравнительно новый способ получения уксусной кислоты состоит в реакции метанола с моноксидом углерода в присутствии родиевого катализатора  [c.432]


    Недавно был предложен способ получения уксусной кислоты, основанный на реакции метанола с монооксидом углерода в присутствии родиевого катализатора [c.309]

    Кислотные растворители, протонируя исходное соединение, промежуточные или конечный продукты, могут изменять природу восстанавливаемой и образующихся молекул. Так, пиридин превращается в кислой среде в пиридиниевую соль и гидрируется уже в виде соли. При этом пиридиниевый катион адсорбируется на поверхности катализатора плашмя за счет я-электронов цикла, подобно бензолу. Нейтральная же молекула пиридина адсорбируется посредством неподеленных электронов атома азота и располагается под углом к поверхности катализатора, что затрудняет перенос к ней хемосорбированного водорода. Поэтому пиридин наиболее легко гидрируется на платиновом или родиевом катализаторе в уксусной кислоте или в смеси метанола и хлороводородной кислоты  [c.41]

    СС14 — уксусная кислота — метанол- -Н2504 (как выше (принят как стандартный метод в США, реакция протекает без катализатора) [c.143]

    Механизм может соответствовать уравнению (80) и включать образование ионной пары при взаимодействии передатчика цепи и полимерной ионной пары, после чего следует либо быстрая передача через мономер, либо спонтанная передача. К попытке различить эти две возможности относятся те же критические замечания, что и к соответствующим попыткам в случае передачи через ароматические соединения. Этилацетат и метанол вызывают уменьшение как скорости, так и степени полимеризации, однако это может быть обусловлено комплексообразованием с катализатором. Уксусная кислота уменьшает степень полимеризации, но увеличивает скорость. Это дает возможность предположить, что она может обладать также и сокаталитической активностью. Значения ку/кр приведены в табл. 8. [c.253]

    При реакции СО с метанолом получают уксусную кислоту. Реакцию СНзОН + СО— -СНзООН проводят в газовой фазе при 10—70 МПа в присутствии катализаторов. Константа равновесия К°о этой реакции уменьшается с температурой и составляет при 300, 500 и 600К Ю> , Ю - и соответственно. Поэтому проведение этой реакции при повышенных давлениях СО объясняется не термодинамическими, а кинетическими соображениями — необходимостью активации катализатора. [c.345]

    Уксусная кислота может быть также получена карбонили-рованием метанола оксидом углерода в присутствии катализатора. Наиболее широко применяются катализаторы, состоящие из двух компонентов металлов подгруппы железа — Ре, Со, N1, способных к образованию карбонильных соединений, а также ВРз или же Н3РО4. [c.273]

Рис. 3. Предполагаемый механизм карбонилирования метанола в уксусную КИСЛОТ)- на род1, евом катализаторе. Рис. 3. Предполагаемый <a href="/info/625019">механизм карбонилирования</a> метанола в <a href="/info/1357">уксусную КИСЛОТ</a>)- на род1, <a href="/info/56385">евом</a> катализаторе.
    Реакция конверсии водяного газа. Реакция конверсии водяного газа была обнаружена как побочная реакция при кар-бонилировании метанола на родиевом катализаторе уже в ходе лабораторных исследований и разработки процесса [4, 16]. Она состоит во взаимодействии монооксида углерода и воды с образованием водорода и диоксида углерода. С умеренными скоростями она также протекает в растворе уксусной кислоты в отсутствие активных метильных групп в каталитической системе при условиях, близких к условиям карбонилирования метанола. Сотрудники Рочестерского университета наблюдали протекание этой реакции с измеримыми скоростями на данной каталитической системе при низкой температуре и давлении ниже атмосферного [17, 18]. Конверсия водяного газа — наиболее глубоко исследованная из побочных реакций, сопровождающих процесс карбонилирования метанола на родиевом катализаторе [19, 20]. [c.298]

    На рис. 8.11 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой BASF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода. Синтез осуществляется при 250 С и 70— 75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 сиова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подается в колонну 5, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание. [c.271]


    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Уксусная кислота из метанола и окиси углерода получается также при пропускании смеси их над катализатором из метафосфата хрома при 100—200 ат и 200—250° [65]. За пропуск образуется конденсат, содержащий 13% СН3СООН. [c.734]

    В. Реппе [69] нашел, что спирты с окисью углерода в присутствии карбонилобразующих металлов дают с хорошими выходами соответствующие кислоты нормального и изостроения. Лучшими катализаторами являются Ni с QiJ. , и или Ni( 0)4 с NiJ. . Скорость образования кислот из спиртов большая, чем при синтезе уксусной кислоты из метанола и окиси углерода. Метиловый и этиловый спирты образуют лишь уксусную и пропионовую кислоты, более высокомолекулярные спирты—кислоты нормального и изо-строения  [c.738]

    В реальных процессах, как правило, сочетаются реакции сразу нескольких типов. Проследим за превращениями комплексов родия, являющихся катализаторами в промышленном процессе карбонилироиания метанола до уксусной кислоты  [c.376]

    При конденсации 2-хлорпиридина (I) с цианистым бензилом (II) под действием гидрида лития получают а-фе-нил-а-(пиридил-2)-ацетонитрил (III), который омыляют водно-спиртовым раствором едкого кали до калиевой соли а-фенил-а-(пиридил-2)-уксусной кислоты и без выделения гидрируют с никелевым катализатором при 70 °С и давлении водорода 50 атм. Продукты гидрирования нагревают в сильно щелочной среде, что приводит к частичной изомеризации эритро-формы в трео-, и при дальнейшем под-кислении осаждак5 Т V трео-а-фенил-а-(пиперидил-2)-уксусную кислоту (V), которую этерифицируют метанолом и серной кислотой. Последующее выделение гидрохлорида [c.150]

    Метилового эфира трео-а-фенил-а-(пиперидил-2)-уксус-ной кислоты гидрохлорид (меридил) (IV). Раствор 190 г а-фенил-а-(пиридил-2)-а-ацетонитрила (III) и 380 г едкого кали в 4 л 50% водного метанола кипятят 7 ч. Метанол и часть воды отгоняют, уменьшая объем реакционной массы до 2 л. pH раствора доводят до 8,0 добавлением конц. соляной кислоты, прибавляют 200 г скелетного никелевого катализатора и гидрируют при 70°С и начальном давлении водорода 50 атм. Катализатор отфильтровывают, промывают водой и из фильтрата хлороформом (3 раза по 200 мл) извлекают побочный продукт — 2-бензилпипе-ридин (19,5 кг). К водному раствору прибавляют 400 г твердого едкого кали и отгоняют постепенно в течение Зч воду, доводя объем реакционной массы до 1,6 л (в процессе упарки проходит частичная изомеризация эритроизомера в трео-изомер), после чего раствор охлаждают до 20—25 °С и подкисляют конц. соляной кислотой до pH 6,0. Выпавший осадок трео-а-фенил-а-(пиперидил-2)-уксусной кислоты (VII) отфильтровывают. К фильтрату добавляют 400 г едкого кали, массу кипятят 5 ч, охлаждают до 20—25 °С и прибавляют коиц. соляной кислоты до pH 6,0. Выделившийся осадок VII отфильтровывают. Водный маточный раствор оставшийся после отделения трео-кислоты VII, упарив ют, остатки воды отгоняют в виде азеотропа с бензолом, добавляют I л метанола и 150 мл конц. серной кислоты, кипятят 6 ч, подщелачивают при [c.152]

    Диозонид и диальдегид хинолина не выделены и их существование в свободном виде неизвестно. Юркина, Русьянова и др. изучали механизм озонолиза хинолина в различных растворителях (хлороформ, метанол, уксусная кислота безводная и с добавлением воды) [137—140]. Ими было показано, что наилучшим растворителем является 90%-ная уксусная кислота что гидролиз диозонида в воде происходит очень быстро в растворе обнаружены пиридин-2,3-диальдегид, глиоксаль, щавелевая кислота и смолистые продукты. Превращение диальдегида в никотиновую кислоту удалось авторам достичь действием на него атомарным кислородом, получаемым при термическом разложении озона. Для этого раствор диозонида в 90%-ной уксусной кислоте нагревали до 106° С и пропускали через него озон в присутствии катализатора — ацетата кобальта. Таким образом, авторы разработали одностадийный процесс превращения хинолина в никотиновую кислоту с применением одного окислителя озона. Процесс проводится в два периода, отличающиеся только температурными условиями. Оптимальными режимами являются для первого периода— температура 20—25° С, концентрация уксусной кислоты — 90%, хинолина 100г/л, расход озона 3 моля на 1 моль хинолина для второго периода — содержание воды 10%, количество ацетата кобальта 0,5—1,0% к массе хинолина, температура 106° С, расход озона 1 моль на 1 моль хинолина. Выход медицинской никотиновой кислоты составляет 80%. [c.197]

    Недавно бьш разработан оригинальный мегод но.лз чення уксусной кислоты прямьгм карбогшлированнем метанола в нрисутсгвин сложного катализатора на основе комплексов родия (см.главу 28). [c.1404]

    Окислителем сх жит воздух, а катализатором соли кобальта (II), обычно в смеси с солями меди (II). Другой более современный мегод получения уксусной кислоты карбоннлнрованнем метанола будет рассмотрен в разделе 28.8.4 этой главы. Некоторое количество уксусного альдегида до сих нор расходуется для синтеза бутаиола-1 по схеме  [c.2260]

    Памп была исследована реакция раскрытия азиридинового кольца в фенил овом эфире г мс-4[1-бензгидрил-3-(диизопропоксифосфорил) азиридин-2-ил]уксусной кислоты 26. Гидрирование соединение 26 в метаноле при 23-25 С в присутствии катализатора (10% Рс1 на угле) протекает с селективным разрывом связи углерод-азот со стороны ароматического ядра и образованием первичной амино-группы (схема 8). В результате был получен фениливый эфир 4-[2-амино-2- [c.15]

    Гидрирование фенилового эфира г мс-4[1-бензгидрил-3-(диизопропоксифосфорил)азиридин-2-ил]уксусной кислоты в метаноле в присутствии катализатора (10% Pd на угле) при 23-25 С протекает с селективным разрывом углерод-азотной связи со стороны ароматического ядра и образованием первичной аминогруппы. Целевой фосфорсодержаш,ий амин был получен с выходом 79% и его гидролиз 6N НС1 привел к соответствуюш,ему гидрохлорид[ 1 -амино-2-(4-гидроксифенил)-1 -этил]фосфорной кислоты с выходом 87%. [c.22]

    Свитсер и Брикер [9] разработали метод определения олефинов и других соединений, основанный на титровании этих соединений трибромид-ионом и регистрации спектра в области 270—360 нм. Миллер и Дефорд [10] видоизменили этот метод, использовав в нем электролитическое генерирование брома титрование проводилось в смеси 3 1 ледяной уксусной кислоты и метанола с небольшими добавками бромида калия и соляной кислоты. Для осуществления прямого титрования необходимо присутствие в растворе хлорида ртути(II) в качестве катализатора. При использовании этого катализатора поглощение измеряли при 360 нм. Это — наименьшая длина волны, которую можно использовать для раствора с хлоридом ртути(II) и для которой наблюдалось достаточно сильное поглощение. [c.208]

    Дьюбо и Скуг [45] предложили метод амперометрического титрования олефинов бромом, образующимся в стандартном растворе смеси бромата и бромида. Хорошие результаты получались в этом анализе при использовании растворителя, представляющего собой смесь уксусной кислоты, четыреххлористого углерода, метанола, серной кислоты и хлорида ртути(II) в качестве катализатора. Позже выяснилось [46, 47], что еще лучшие результаты получаются без хлорида ртути(II). Уравнения соответствующих реакций имеют вид [c.225]


Смотреть страницы где упоминается термин Катализатор уксусной кислоты из метанол: [c.97]    [c.121]    [c.465]    [c.191]    [c.122]    [c.231]    [c.693]    [c.294]    [c.295]    [c.203]    [c.151]    [c.163]    [c.531]    [c.18]    [c.151]   
Основы химической технологии (1986) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонилирование метанола в уксусную кислоту катализатор

Метанол кислота



© 2024 chem21.info Реклама на сайте