Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные лабильные

    Лабильные и инертные комплексные ионы [c.48]

    Многие ранние исследования комплексных соединений, послужившие основой современных представлений о природе этих веществ, проводились на комплексах хрома(1П), кобальта(П1), платины(П) и платины(1У). Комплексы этих ионов являются инертными, т.е. характеризуются малой скоростью замещения лигандов. Комплексы, характеризуемые быстрым замещением лигандов, называются лабильными. [c.400]


    Понятие о лабильности и инертности. Комплексные ионы делятся на лабильные и инертные. У лабильных ионов реакции замещения проходят быстро, т. е. лабильные ионы находятся со средой в динамическом равновесии. У инертных комплексных ионов реакции замещения лигандов протекают медленно и поэтому они медленно реагируют на изменение условий в системе. Инертные ионы могут участвовать в быстрых реакциях отщепления частей лигандов, осаждения, ассоциации и окисления—восстановления, которые будут рассмотрены отдельно. [c.48]

    Зависимость молекулярной электропроводности (р.) растворов комплексных соединений от лабильности внутрисферных заместителей [c.276]

    При всем разнообразии комплексных Лабильные соединений существует довольно гру- [c.173]

    С позицией закономерности трансвлияния комплексные соединения никеля исследованы чрезвычайно мало. Такого рода исследования затруднены, во-первых, вследствие отсутствия данных о строении многочисленных комплексов никеля. Во-вторых, вследствие увеличения ионогенного характера связи металл — адденд при переходе от Р1 (II) к Рс1 (II) и N1 (II), а также в ряду Со (111) — N1 (II) внутрисферные заместители в никелевых комплексах довольно лабильны, что сильно усложняет наблюдаемую при реакциях внутрисферного замещения картину. [c.156]

    Широко распространенные комплексные соединения железа с порфиринами не являются единственными биологически активными соединениями этого металла. Важные биологические функции (перенос электронов, восстановление при фиксации СО2, восстановление при фиксации N2, окисление сукцината при окислительном фосфорилировании и др.) выполняют белки, содержащие железо, связанное с серой сера представлена или сульфгидрильной формой (цистеин), или так называемой лабильной серой (вероятно, 5 - или Н8 ), число атомов которой чаще всего равно числу атомов железа в молекуле белка. [c.366]

    Электронное состояние атома-комплексообразователя и сила поля лигандов влияют на кинетическую стабильность комплексных ионов и скорости реакций с их участием. Кинетическую стабильность комплексов принято характеризовать скоростью замещения в них одних лигандов на другие. Если при 25 °С и стандартной концентрации реагирующих веществ замещение лигандов в комплексе проходит за интервал времени, меньший 1 мин, то комплекс называют лабильным, если больший, чем за 1 мин, то комплекс считают кинетически инертным. [c.347]

    Различие в поведении между комплексными роданидами Сг + и Fe + является частным случаем различия между лабильными и [c.31]


    Обмен комплексного иона со средой лигандами или ионом металла. Реакции обмена позволяют судить о том, лабильна или инертна комплексная частица. К ним относятся следующие реакции. [c.36]

    Ассоциаты могут образовываться инертными и лабильными комплексными ионами. В случае инертных ионов ассоциацию, не осложненную процессами замещения, которые заторможены, можно изучать в более чистом виде. Когда процесс замещения внутри-сферного лиганда внешнесферным выгоден термодинамически, ионную пару можно рассматривать как промежуточный продукт [c.39]

    Механизмы А, О, / и /,< применяются и для интерпретации реакций лабильных комплексных ионов. У катионов с внешней электронной оболочкой 5 (Ве ) и s p (катионы подгруппы скандия, редкоземельных элементов и актиноидов, щелочных и щелочно-земельных металлов) скорость реакций образования комплексов в водных растворах тем меньше, чем выше электростатические характеристики иона металла, например, его ионный потенциал фм = м/гм (где гм — заряд иона, Гм — радиус иона). Расположение 5 -катионов в порядке убывания фм приведено в табл, 8.1. [c.387]

    Разделение и очистка комплексных соединений при помощи хроматографии и электрофореза. Для выделения комплексного иона из смеси инертных комплексов пригодны методы, применяющиеся для лабильных комплексов, но требования к избирательности реакции здесь гораздо выше. Это легко видеть на примере реакции осаждения при обработке избытком осадителя смеси взаимопревращающихся лабильных комплексов получается осадок, образованный только одним из них. Из смеси близких по свойствам инертных ионов выпадает смесь продуктов. [c.417]

    Закономерности в кинетической устойчивости. Комплексные частицы наряду с термодинамической характеризуются кинетической устойчивостью, которая определяется их способностью к обмену лигандов По этой способности комплексы делят на инертные (обмен лигандов происходит медленно) и лабильные (обмен лигандов происходит быстро). Для количественной характеристики способности комплекса к обмену лигандами используются скорости процесса, время полупревращения и др. [c.276]

    Несмотря на то что часто устойчивые комплексные частицы инертны, а неустойчивые лабильны, определенного соответствия между термодинамической и кинетической устойчивостью не существует. Устойчивые комплексы могут быть лабильными, а неустойчивые инертными. Устойчивость комплекса зависит от АО реакции, а лабильность — от его энергии активации. [c.276]

    Чтобы устранить произвольное толкование понятий ковалентности и прочности связей для классификации комплексных соединений были введены Н01вые термины. Так, Г. Таубе предложил кла1Ссифицировать координационные соединения по электронной структуре комплекса. Относительно стабильные комплексы, образованные ( -орбитами с более низким квантовым числом, гибридизирующиеся с 5р -ор битами с более высоким квантовым числом, Таубе назвал внутриорбитальными. К внешнеорбитальным комплексам он отнес более лабильные комплексы, в кото- [c.7]

    Кинетические методы имеют ограниченное применение и используют их преимущественно при исследовании инертных комплексов. В равновесных методах определяют концентрации участников реакции, которые для инертных комплексов могут быть найдены химическим анализом, а в случае лабильных комплексов с помощью различных физико-химических методов. Общепринятая процедура заключается в определении всех или некоторых равновесных концентраций комплексообразователя, лиганда или комплексных соединений, а затем в нахождении составов и вычислении констант устойчивости и химического [c.616]

    Описаны основные принципы синтеза инертных и лабильных комплексов, устойчивость комплексов в растворах, кинетика и механизм реакций замещения лигандов, виды изомерии комплексных ионов. [c.2]

    Большое внимание уделено химии лабильных комплексных частиц, факторам, влияющим на устойчивость этих частиц, основным способам определения коистант устойчивости комплексных соединений в растворе. [c.2]

    Понятия инертный и лабильный относятся к области кине тики и их нельзя смешивать с выражениями устойчивый и неустойчивый , которые определяют термодинамическую устойчивость. Так, инертный комплексный ион [Со(МН з) в 1 в кислой среде термодинамически неустойчив константа равновесия [c.48]

    Сокращенные формулы применяют по отношению к лабильным комплексным ионам, существующим в растворах. Существование таких ионов обычно определяется методами исследования равновесий. Для определения их состава прослеживают зависимость концентрации комплекса от концентрации компонентов. Если концентрация некоторых компонентов (обычно растворителя и индифферентной соли) во время исследования не изменяется в достаточной степени, невозможно установить, сколько частиц этих компонентов входит в состав комплексного иона. Поэтому в формуле комплексного соединения предпочитают указывать только те лиганды, наличие которых установлено достоверно. Остальные места в координационной сфере могут быть заполнены по-разному. Например, сокращенная формула иона дироданожелеза (1П) Fe(S N)2+, обнаруженного в системе Fe +—S N в присутствии [c.25]


    Комплексные соединения катионов с внешней электронной оболочкой а также лантаноидов и актиноидов лабильны. [c.49]

    Тесная связь между промежуточными сеединениями в катализе и лабильными неорганическими комплексами была очевидной уже давно, и тем не менее только в самое последнее время бурное развитие химии комплексных соединений в связи с применением теории поля лигандов, а также возобновлением интереса к гомогенному катализу, позволило осуществить новый, более химический подход к проблеме катализа [3]. [c.15]

    Закономерности, оправдывающиеся для соединений платины, в ряде случаев оказываются справедливыми для комплексных соединений трехвалентных кобальта, родия и иридия. Специфика кобальтовых комплексов состоит в увеличении лабильности внутрисферных групп и ионов по сравнению с Pt (II), строении внутренней сферы четырехкоординационных комплексных соединений Со (II). Вследствие увеличения степени ионогенности связи центральный ион — адденд эффекты, обусловленные трансвлия-нием выражены слабее и появляется тенденция к изомеризации. Соединения Со (III) в силу высокой подвижности групп сильнее подвержены гидратации, чем комплексы Pt. Поэтому в химии кобальта отступления от закономерности трансвлияния наблюдаются чаще, чем в комплексах двух- или четырехвалентной платины, не все превращения могут быть объяснены непосредственно трансвлиянием. [c.171]

    В химии инертных комплексных ионов, как правило, четко очерчены механизмы реакций благодаря этому можно проследить генеалогические связи между продуктами реакции и исходными пеществами. По мере увеличения лабильности комплексов приходится рассматривать все большее число возможных взаимопревращений порой получаются довольно неожиданные продукты. Так, при взаимодействии Со2(СО)ь с СЗг в органических растворителях образуется комплекс со структурой СобС(СО) 25г [c.34]

    В комплексных ионах с разнородными лигандами часть лигандов может вести себя инертным образом, а часть — лабильным. Центральный ион с инертными лигандами часто рассматривают как неизменную структурную единицу в реакциях замещения и присоединения. Так ведут себя металлорганические фрагменты типа С2Н5М + или (С2Н5)зРЬ+, оксокатионы типа иОг + и др. Присутствие таких фрагментов в комплексе иногда отражают в его названии. Например, оксоацетатные комплексы и(VI) называют ацетатными комплексами уранил-иона. [c.34]

    Внешнесферная частица может быть связана неэлектростатическими силами. Например, катион [Со(ЫНз)5ЫСЗ] + ассоциирует с катионом А +. Ассоциация осуществляется за счет свободного донорного атома 5 у роданид-иона, и связь в значительной мере ковалентна. При внешнесферной координации катиона образуется двуядерная комплексная частица. Реакции ассоциации инертных комплексных ионов приводят часто к образованию двуядерных частиц, у которых одна из половин ведет себя как инертная, другая— как лабильная. Вся двуядерная частица при этом быстро и обратимо диссоциирует на одноядерные. [c.39]

    Физические свойства энантиомеров крайне близки, а энергии образования одинаковы, т, е, равновесная смесь должна быть рацематом— состоять из 50% одного и 507о другого изомера. Рацемат оптически недеятелен, так как оптическая деятельность изомеров взаимно компенсируется. При синтезах комплексных соединений, имеющих оптические изомеры, о бразуется, как правило, рацемат. Для разделения рацемата на эиантиомеры или для синтеза только одного из энантиомеров необходимы специальные схемы синтеза. Выделенный из смеси изомер рацемизуется быстро в случае лабильных комплексов и тех инертных комплексов, рацемизация которых возможна по механизму внутримолекулярной перегруппировки и медленно в случае остальных инертных комплексов. Например, правовращающий комплекс [СоЕпз]С1з не теряет оптической активности при нагревании до 127°С в течение 85 ч. Поскольку лабильные комплексы рацемизуются чрезвычайно быстро, их не удается расщепить на оптические антиподы, но это не значит, что оптическая изомерия у лабильных комплексов не существует. [c.162]

    Для инертных комплексных ионов в растворе некоторое время может существовать неравновесная смесь изомеров и инертные комплексы могут быть переведены в твердую фазу без изменения строения. Так, соединение [Со(МНз) 5 I ]С1 а и в кристалле, и.в растворе состоит из ионов [ o(NHg)5 lp+ и С1 . При растворении же, например, алюмокалиевых квасцов, в кристаллах которых ионы 8042"координированы алюминием, оказывается, что лишь очень малая доля ионов в растворе связана в сульфатные комплексы. По мере разбавления раствора комплексного соединения степень диссоциации лабильных комплексов увеличивается, так как лиганды из них вытесняются растворителем, инертные же комплексные ионы не изменяются. [c.50]

    Ассоциаты могут образовываться инертными и лабильными комплексными ионами. В случае инертных ионов ассоциацию, не осложненную процессами замещения, которые заторможены, можно изучать в более чистом виде. Когда процесс замещения внешнесфе-рным лигандом внутрисферного выгоден термодинамически, ионную пару можно рассматривать как промежуточный продукт реакции замещения. Так, при взаимодействии Ре " с Ре на первой стадии образуется ионная пара [Ре(Н20)в ][Ре(СН)е]), а на второй происходит вытеснение молекулы воды из внутренней координационной сферы и образование мостикового двуядерного комплекса [(Н20)5ре(СЫ)Ре(СЫ)5]. [c.56]

    Если протон в молекуле лиганда связан лабильно, то вся реакция идет быстро и обратимо. Лабильно связанный в лиганде протон имеет высокую скорость обмена со средой. Поэтому исследования обмена комплексной частицы со средо) мечеными атомами водорода, с одной стороны, и мечеными донорными атомами — с другой, дают разные результаты. Критерий лабильности всей частицы получается только при исследованиях второго типа. [c.57]

    При синтезах комплексных соединений, имеющих оптические изомеры-антиподы, образуется, как правило, рацемат. Для разделения рацемата на изомеры или для синтеза только одного из изомеров необходимы специальные меры. Выделенный изомер рацеми-зуется быстро в случае лабильных комплексов и тех инертных комплексов, рацемизация которых возможна по механизму внутримолекулярной перегруппировки медленно — в случае остальных инертных комплексов. Поскольку рацемизация лабильных комплексов идет чрезвычайно быстро, они фактически не могут быть расщеплены на оптические антиподы, но это не значит, что оптическая изомерия у лабильных комплексов не существует. [c.104]


Смотреть страницы где упоминается термин Комплексные лабильные: [c.70]    [c.187]    [c.116]    [c.78]    [c.2]    [c.32]    [c.32]    [c.34]    [c.410]    [c.2]    [c.48]   
Неорганическая химия Изд2 (2004) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение комплексного нона из системы лабильных комплексов

Комплексные соединения комплексы лабильные

Комплексные соединения лабильные

Лабильные и инертные комплексные ионы

Нахождение области существования комплексных ионов в лабильных системах



© 2024 chem21.info Реклама на сайте