Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия кинетика процесса

    Таким образом, кинетика процесса адсорбции описывается уравнениями диффузии и массопередачи. Однако эти уравнения гро- [c.260]

    Скорость контактного процесса во внешнедиффузионной области зависит от гидродинамического режима потока газа в слое катализатора и площади внешней поверхности зерен. Сопротивление переносу массы к внешней поверхности катализатора очень редко лимитирует скорость контактного процесса. Чаще всего при разработке кинетики процесса сопротивление внешней диффузии [c.283]


    Внешняя диффузионная область. В этом случае концентрация реагирующих веществ даже на поверхности пористого тела, а тем более внутри пор гораздо меньше, чем в объеме. Кинетика процесса при этом подчиняется уравнениям диффузии, [c.315]

    В области быстрого процесса величина = f — g > I (/ — фактор разветвления, g — фактор обрыва), т. е. процесс разветвления 3 преобладает над процессами обрыва. С точки зрения обрыва цепей на стенке имеют место два предельных случая 1) вероятность захвата радикала стенкой е очень мала 2) вероятность захвата е велика. Малые е (е < 10- ) физически означают, что скорость адсорбции и соответственно гибели активных центров Н определяется не транспортными свойствами, т. е. не скоростью диффузии к стенке, а частотой соударений со стенкой и эффективностью стенки, т.е. кинетикой процесса на стенке. В этих случаях говорят, что процесс протекает в кинетической области, и Тд ф пренебрежимо мало. Здесь решающую роль играют вид (материал) и состояние стенки, причем характерно, что в этих случаях концентрация активных частиц по объему однородна и нет градиентов концентрации Н [106]. Если скорость обрыва на стенке W t = aai(H) и asi = то, поскольку ф = 2 а — а ), [c.298]

    ДИФФУЗИЯ. КИНЕТИКА ГЕТЕРОГЕННЫХ ПРОЦЕССОВ [c.402]

    Поскольку с увеличением длительности работы катализатора внешняя поверхность его гранул покрывается слоем коксовых отложений и каталитическая активность этих участков резко снижается, в дальнейшем становится необходимым проникновение не-превраш,енных молекул сырья в более глубокие слои гранул катализатора. Другими словами, в связи с тем, что с увеличением длительности работы катализатора по сечению его гранулы послойно откладывается кокс, участки с повышенной каталитической активностью оказываются расположенными все дальше от поверхности гранулы. Поэтому при продолжительном крекинге для кинетики процесса все большее значение приобретает диффузия по порам катализатора молекул сырья к активным центрам и продуктов крекинга в свободный объем между гранулами катализатора. [c.114]

    Электродные процессы в растворах Электродные процессы в расплавах Химическая кинетика и диффузия Кинетика химических реакций Диффузия [c.13]


    Набухание непосредственно связано с кинетическими характеристиками ионитов, особенно органических. Оно увеличивает скорость ионного обмена. При обсуждении кинетики процесса ионного обмена обычно рассматривают пять его стадий с учетом взаимной диффузии противоионов 1) диффузия адсорбирующихся ионов из раствора к поверхности ионита, 2) диффузия внутри зерна ионита, [c.169]

    В тех случаях, когда скорости реакции и диффузии с мы по своей величине, реакция протекает в переходной и для описания кинетики процесса в целом должна учи как кинетика собственно химической реакции, так и диффузии. [c.518]

    Как уже говорилось во введении, процесс горения слагается из двух стадий подвода окислителя (и отвода продуктов сгорания) за счет молекулярной или турбулентной диффузии (смешения) и протекания химической реакции. В зависимости от условий либо та, либо другая стадия может стать определяющей, либо влияние диффузионных и кинетических факторов может быть сопоставимым. Если скорость химической реакции гораздо больше скорости диффузии, то определяющей является диффузия, процесс горения протекает в диффузионной области. В противоположном случае процесс определяет кинетика (кинетическая область горения). При сопоставимом влиянии диффузии и кинетики процесс протекает в промежуточной области. [c.63]

    Размывание, вызываемое малой скоростью массообмена и другими причинами диффузионного порядка, целесообразно рассмотреть как некоторую эффективную продольную диффузию, т. е. связать константы кинетики процесса массообмена с эффективным коэффициентом диффузии Оэфф, описывающим совокупность диффузионных процессов в хроматографической колонке. [c.24]

    Вещество А в таких реакциях реагирует с веществом В, образуя продукт АВ (рис. 131). Толщина слоя продукта реакции АВ с течением времени возрастает. Для протекания реакции необходимо, чтобы вещество А непрерывно диффундировало к поверхности вещества В через слой продукта реакции АВ. Если скорость такой диффузии неизмеримо меньше скорости химической реакции между Л и 5, то кинетика процесса полностью определяется скоростью диффузии. [c.215]

    Рассмотрим кинетику реакции раствора (газа) на твердой поверхности, когда определяющей стадией является диффузия и процесс протекает стационарно. Если в объеме (далеко от стенки) концентрация равна Со, а около самой поверхности — с , то этот перепад концентрации осуществляется в некотором пристенном слое толщиной б, называющимся диффузионным слоем. При зтом скорость диффузии, т. е. количество вещества, подводимого в единицу времени к стенке площадью 5, согласно первому закону Фика равна  [c.277]

    Диффузия имеет большое значение в гетерогенных процессах, поскольку за счет ее происходит изменение концентрации в приповерхностном слое, влияющее на кинетику процесса. Диффузия описывается законами Фика. [c.260]

    Если реакция протекает на поверхности раздела фаз, уравнение (6.18) будет описывать кинетику реакции первого порядка (с заменой константы равновесия Кр на константу скорости реакции к)] для полного описания кинетики процесса следует еще учесть скорость обратной реакции и скорость отвода продукта в объем жидкости за счет диффузии. Последняя может быть учтена при использовании уравнения (6.15), в которое войдет градиент концентрации продукта. [c.164]

    Перенос вещества через колонку нонита может происходить в равновесных или неравновесных условиях. Поэтому существуют теория равновесной ионообменной динамики сорбции и хроматографии и теория неравновесной динамики ионообменной сорбции и хроматографии. Отсутствие равновесия при хроматографическом процессе может быть вызвано в основном тремя причинами диффузией внутрь зерен ионита, диффузией через жидкую пленку (стр. 99), окружающую каждое зерно ионита, и кинетикой процессов сорбции — десорбции. [c.126]

    Уравнение кинетики процесса, лимитируемого внешней диффузией, для зерна ионита, находящегося в некотором объеме жидкости, имеет вид  [c.307]

    Кинетика процессов травления. Травление рассматривают как многостадийный процесс, включающий следующие этапы 1) диффузия реагента к поверхности 2) адсорбция реагента 3) поверхностная реакция 4) десорбция продуктов взаимодействия 5) диффузия продуктов реакции от поверхности. [c.101]

    Изотермическая перегонка наглядно проявляется в переносе вещества от выпуклых поверхностей к вогнутым. Этим явлением обусловлено срастание частиц твердой дисперсной фазы, между которыми возникли непосредственные контакты, в том числе спекание-, при этом механизмы переноса бывают различными это может быть объемная диффузия вещества дисперсной фазы через дисперсионную среду (при заметной растворимости в ней вещества дисперсной фазы) либо через саму дисперсную фазу или поверхностная диффузия по границе раздела. Кинетика процессов спекания во всех этих случаях подробно рассмотрена Я- Е. Гегузиным.  [c.269]


    Эффективность колонки и селективность неподвижной фазы. Способность колонки к разделению зависит от ее эффективности и селективности НФ. Эффективность колонки определяется расширением хроматографического пика по мере прохождения вещества через колонку. Она зависит от кинетики процессов в колонке и оценивается ВЭТТ, которая в свою очередь зависит от скорости газа-носителя, процессов диффузии и сопротивления массообмену. Расчет ВЭТТ является наиболее предпочтительной мерой эффективности колонки. Селективность НФ связана с взаимодействием растворенного вещества с растворителем и определяет относительное положение пиков анализируемых веществ на хроматограмме. Мерой селективности колонки является расстояние между максимумами двух пиков чем оно больше, тем селективнее колонка. Количественно селективность данной колонки оценивают величиной коэффициента разделения (а) для данных двух компонентов [c.335]

    После начала пассивации дальнейший рост электродного потенциала вызывает некоторое эквивалентное повышение поверхностного химического потенциала кислорода, следовательно, обусловливает дальнейшее упрочнение связи поверхностных катионов (т. е. повышение степени пассивации металла). В то же время создающаяся при этом большая разность химических потенциалов между поверхностью твердой фазы и объемом металлической решетки с какого-то момента вызывает встречную диффузию анионов и катионов и постепенное формирование окисленной поверхностной пленки. Это образование или утолщение пленки не вносит ничего принципиально нового в природу лимитирующего акта ионизации. Тем не менее, диффузия катионов в поверхностные вакантные узлы из нижележащих слоев решетки металла может существенно изменять кинетику процесса. Однако именно в результате диффузии, поддерживающей химический потенциал металла в поверхностном слое выше равновесного, и появляется у пассивного металла на поляризационной кривой участок постоянной скорости растворения, которого нет у индивидуального окисла. [c.441]

    Внешняя диффузионная область. Определяется условиями, при которых концентрации реагирующих веществ на поверхности пористого тела (и тем более внутри пор) гораздо меньше, чем в объеме. Кинетика процесса при этом подчиняется уравнениям диффузии и чаще всего описывается уравнением реакции первого порядка, так как скорость диффузии прямо пропорциональна концентрациям реагирующих веществ. [c.14]

    Собственно адсорбция протекает практически мгновенно, поэтому не является стадией, лимитирующей скорость процесса в целом. Вследствие этого кинетика процесса адсорбции зависит от скоростей стадий диффузии внешней, внутренней и смешанной. [c.190]

    При применении безградиентных реакторов поддерживать изотермический режим несложно, удается итйежать погрешностей в измерениях, обусловленных осевой диффузией в случае гетерогенных каталитических реакций обеспечивается возможность сильно ослабить или исключить влияние процессов диффузии в зерне катализатора. Поэтому для точного исследования кинетики процесса безградиентные реакторы, как правило, предпочтительнее. [c.36]

    В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]

    Оценка влияния диффузионных эффектов в эмульсионной полимеризации. Обычно математическое описание кинетики процесса эмульсионной полимеризации сводят либо к детерминированной кинетической модели [15—22], либо к модели, основанной на вероятностных представлениях [23—281. В основе этих подходов лежит допущение о том, что скорость постзшления мономера к по-лимер-мономерным частицам превосходит скорость полимеризации в последних, т. е. процесс протекает в кинетической области. Экспериментальной и теоретической проверке этого положения в эмульсионной полимеризации уделялось сравнительно мало внимания. Влияние диффузии на скорость полимеризации может быть значительным, когда скорость полимеризации в частицах превосходит скорость поступления мономера к нолимер-моно-мерным частицам (внешнедиффузионная область) и скорость диффузии мономера и радикалов внутри частицы (внутридиффузион-ная область). Одними из немногих работ, где делается попытка получить качественные и количественные оценки диффузионных явлений в эмульсионной полимеризации, являются работы [29, 30]. Автор работы [30] получает скорость максимального диффузионного потока к поверхности частицы в виде [c.146]

    Скорость десорбции в потоке несорбирующего газа-носителя относительно мало зависит в этих условиях от скорости потока свыше 0,7 м/с (рис. 2.17) [4], т. е. в данном случае диффузия является более медленной стадией, определяющей кинетику процесса. [c.86]

    Кинетическая область. Если диффузия протекает значительно быстрее реакции, то кинетика процесса определяется механизмом собственно реакции. Если катализатор непористый, то реакция протекает на поверхности частиц катализатора. Если реакции на поверхности быстрее диффузии в поры, но медленнее внешней диффузии, то реакция также протекает на поверхности катализатора независимо от процесса диффузии. Это случаи протекания реакции во виешней кинетической области. Если скорость процесса определяется собственно механизмом реакции на всей внутренней и внешней поверхности катализатора, то процесс проходит во внут-рикинетической области. В первом случае скорость реакции пропорциональна внешней поверхности частиц катализатора (или / к), во втором — его удельной поверхности. [c.144]

    Для количественного определения влияния внутреннего переноса на кинетику процесса, определения эффективности использования внутренней поверхности р, т.е. для моделирования процесса в зерне необходимо знать радиус пор уэ, ионстаиту скорости в кинетической области и эффективный коэффициент диффузии Значения для реакций гидрогенолиза этана и пропана известны. Радиус пор и распределение их по размерам определяют методом ртутной по-рометрии. Однако несмотря на растущее совершенствование этого метода, практически невозможно получить полное представление о сложной структуре катализатора. Что касается 4 , то его значение можно оценить лишь приближенно. [c.67]

    Различия в скоростях диффузии каких-либо частиц, влияющих на кинетику процесса электроосаждения, в сочетании с условием эквипотенциальности микропрофиля приводят к неравномерному микрораспределению скорости электроосаждени51. Так, если поляризационная кривая / на рис. 2.4 соответствует микровыступам (сильное перемешивание), а кривая 2 —микроуглублениям (слабое перемешивание), то при потенциале катода Ек плотность тока на микровыступах будет выше, чем в микроуглублениях (отрицательное выравнивание). В противоположном случае (кривая I — слабое перемешивание, кривая 2 — сильное перемешивание) будет наблюдаться положительное истинное выравнивание. [c.15]

    Реакции веществ в твердом состоянии поТЩэаТГгер взаимодействия и кинетике процесса сильно отличаются от реакций в жидких растворах и газах. Твердофазные реакции могут складываться кз отдельных физических и химических процессов рекристаллизации, диффузии, полиморфных превращений, химического взаимодействия, плавления, образования твердых растворов. Эти реакции характеризуются длительностью процесса. [c.105]

    На рис. 39 приведены прямой (анодная поляризация ->) и обратный ход (катодная поляризация кривой заряжения, полученной при поляризации платинированного платинового электрода в 0.1 н. Нг304 при комнатной температуре. Кривая заряжения имеет три отчетливо выраженных участка а, Ь, с. На участке а ( водородная область ) величина АСР велика по сравнению с Де. Поэтому можно считать, что практически все сообщенное электроду количество электричества тратится на снятие адсорбированного водорода, и поэтому можно определить количество адсорбированного водорода по количеству электричества, затраченному в водородной области кривой заряжения (Q на рис. 39). Кинетикой процессов, осуществляющихся в водородной области, определяются и условия поляризации. Лимитирующими стадиями процесса могут ыть или поверхностная диффузия водорода (если принять, что ионизация водорода осуществляется только на некоторых центрах поверхности), или непосредственно скорость ионизации водорода. Поэтому скорость поляризации электрода, обусловливаемая приме- [c.189]

    П. Получение и свойства дисперсных (лиофобных) систем. Этот раздел начинается с анализа термодинамики и кинетики процессов зарождения новой (высокодисперсной) фазы в условиях метастабильности исходной системы, т. е. конденсационных путей образования дисперсных систем диснергационные методы затрагиваются лишь частично, будучи отнесены к заключительному разделу книги. Далее следует относительно сжатое описание неспецифических свойств дисперсных систем мoлeкyляpнo- кинeтичe киx (броуновское движение, диффузия, осмос, седиментационно-диффузионное равнове- [c.12]


Смотреть страницы где упоминается термин Диффузия кинетика процесса: [c.70]    [c.83]    [c.233]    [c.132]    [c.115]    [c.248]    [c.422]    [c.439]    [c.46]    [c.277]    [c.44]    [c.76]    [c.318]    [c.512]    [c.310]   
Коррозия (1981) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов

Процесс диффузии



© 2025 chem21.info Реклама на сайте