Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионный максимальный

    Дымовая точка , пожалуй, наилучшим образом характеризует отложение углерода в камере сгорания реактивного двигателя. Эта точка определяется высотой диффузионного пламени в момент появления дыма определение проводится в специальной испытательной лампе. Видоизменения дымовой точки представляют собой такие показатели, как тенденция к дымообразованию и индекс летучести дыма. Первый из этих показателей равен величине, обратной дымовой точке , — показателю максимальной высоты некоптящего пламени, умноженной на некоторый фактор, обычно равный 320. Индекс летучести дыма равен дымовой точке плюс произведение 0,42 на процент отгона при 204°, этот показатель включен в спецификации на топлива Ш-З, Ш-4. [c.449]


    В работе [142] на основе анализа кривых отклика принято, что закономерности перемешивания жидкости в барботажном слое следуют диффузионной модели и в двухфазных газо-жидкостных системах продольный перенос определяется конвекцией жидкости. При исследовании барботажной колонны диаметром 147 мм в средней ее части наблюдалось восходящее движение жидкости, а у стенок -- нисходящее. Максимальную скорость восходящего движения по оси колонны выразили формулой [c.195]

    Подсчет максимальной работы переноса вещества осложняется скачком потенциала на- границе двух растворов, который называется диффузионным потенциалом. Чтобы избежать появления диффузионного потенциала, заменим элемент (а) более [c.562]

    Как уже отмечалось, диффузионная подвижность влаги в торфяных системах в существенной мере определяется pH среды (см. рис. 4.7). При изотермическом влагообмене с ростом влагопроводности материала (при низких pH) происходит и рост измеряемых электрических потенциалов в материале. Удельные значения электрического потенциала максимальны в области нейтральной реакции среды [224]. Обусловлено это тем, что электрический потенциал в торфяных системах определяется, вероятно, двумя составляющими значениями диффузионного потенциала и потенциала течения, сумма которых максимальна в области нейтрального pH дисперсионной среды торфа. [c.82]

    В мембранных системах с возрастающей энергией связи повышение селективности сопровождается снижением проницаемости и, следовательно, производительности мембранных модулей. В ряде случаев этого удается избежать путем формирования оптимальной структуры матрицы мембраны, направленного синтеза полимерных материалов для разделения газовых смесей определенного состава, причем особенно перспективны реакционно-диффузионные мембраны, в которых возможно максимальное приближение к природным мембранным системам за счет сопряжения процессов диффузии, сорбции и химических превращений. [c.15]

    Движущая сила массопередачи имеет максимальное значение при работе аппарата в режиме идеального вытеснения число единиц переноса и высота аппарата в этом случае минимальны. В реальных аппаратах движение фаз может в значительной степени отличаться от модели идеального вытеснения. Степень отклонения реальной структуры потоков от модели идеального вытеснения (степень продольного перемешивания) для колонных аппаратов чаще всего оценивается на основе диффузионной модели коэффициентами продольного перемешивания. [c.53]


    В общем случае характер процесса определяется параметрами а и 1, которые включают пять основных величин V7 , г ), и /с а. В условиях реального процесса изменению поддаются лишь некоторые из этих величин. Область максимальной скорости протекания процесса определяется тем, какие пз этих величин можно использовать для регулирования скорости процесса. Если можно изменять величины Уд или / о, то максимальная скорость соответствует кинетической области протекания процесса. В случае, когда при постоянных Уд и к а можно изменять величины У , или к , максимальная скорость процесса соответствует диффузионной области. [c.122]

    Вопрос о выборе области протекания процесса усложняется в случае многоступенчатых реакций. При этом максимальная селективность и скорость процесса могут иметь место как в чисто кинетической или чисто диффузионной области (по всем компонентам, способным к дальнейшему превращению), так и в смешанной области, когда имеет место фазовое равновесие по одним компонентам и отсутствует по другим. [c.122]

    Максимальная скорость массопередачи имеет место в диффузионной области при В этом случае [c.123]

    Максимально возможная катодная плотность тока, т. е. предельная диффузионная плотность тока по кислороду /д,, наблюдается при максимальном градиенте концентрации кислорода в диффузионном слое [при (со,) о — Со, = max или со, == О  [c.239]

    I. Предельный диффузионный ток. 2. Максимально возможная скорость диффузии кислорода. [c.264]

    Формула (III.49) определяет максимальный возможный перепад температур между активной поверхностью и ядром потока. В потоках газа, где диффузионное и тепловое числа Прандтля близки к единице (см. раздел III.1), коэффициенты массо- и теплопередачи связаны между собой соотношением а = yP (где у — теплоемкость объема смеси). При этом максимальный перепад температур равен  [c.116]

    При оценке величины Ки здесь использована эмпирическая зависимость фактора массопередачи числа Ке (см. раздел 111.1). Примерно такая же оценка получается для поправки к коэффициенту теплопередачи, если заменить в уравнении (VI. 141) на а/ и диффузионные числа Ки и Рг на тепловые. Безразмерный фактор формы а1 —величина порядка нескольких единиц (о/ = п для простой кубической упаковки шаров ж а1 А для объемно-центрированной упаковки). Из формулы (VI. 141) видно, что при обычных скоростях потока (Ке > 10 ) поправки к коэффициентам переноса незначительна для жидкостей (Рг >1). Для газов (Рг 1) относительная поправка может составлять при Ке — 10 30—40% с увеличением числа Ке эта величина уменьшается, хотя и довольно медленно. Легко заметить, что величина рах характеризует максимальную степень превращения исходного вещества в одной ячейке, достижимую, когда реакция протекает в диффузионном режиме. Так как Ро8< 1, в кинетическом режиме (А < Р) степень превращения в одной ячейке всегда мала. [c.250]

    При исследовании режимов работы ячейки можно, ввиду отмеченной эквивалентности уравнений, использовать все результаты исследования режимов работы изолированного зерна. Поскольку Р < Р и а < а, под влиянием перемешивания в ячейке переход в диффузионный режим наступает при меньших температурах, чем на изолированном зерне. Однако, в силу уравнения (VI.141), максимальный возможный сдвиг критической температуры (в газах при Ке — 10 ) в реакциях с обычными значениями энергии активации может составить лишь несколько градусов. [c.250]

    Предположим, что рост зародышей представляет собой диффузионный процесс, который можно ускорить, используя конвекцию. Тогда первоначально нужно создать максимальную относительную скорость движения кристалла и раствора. Для взвешенных в растворе кристаллов их относительное движение можно организовать, создавая колебания раствора на определенной частоте, изменяемой в ходе роста кристаллов. [c.149]

    Продольное перемешивание в пульсационных колоннах. Для оценки продольного перемешивания в ситчатых пульсационных колоннах используется диффузионная и ячеечная модели с обратным потоком. Максимальное значение коэффициента продольного перемешивания достигается при минимальной удерживающей способности колонны и частоте пульсации / , определяемой по уравнению [127] [c.466]

    Определяющей характеристикой процессов массопередачи, протекающих в двухфазных потоках, является взаимодействие фаз, от которого зависит величина межфазной поверхности. Поэтому аппараты, в которых проходят процессы массопередачи, должны конструироваться так, чтобы поверхность контакта в них была максимальной. В соответствии с этим в основу классификации диффузионной аппаратуры положен принцип образо- [c.83]

    Оценка области протекания реакции ведется по величине максимального диффузионного потока. Однако в условиях, близких к равновесным, реальные диффузионные потоки могут быть много ниже максимально возможных, снижаясь до нуля. [c.147]


    Рис. 3.3 показывает, что величина диффузионного потока зависит также от отношения и меняется от максимальной величины до нуля. Совместное влияние этих конкурирующих факторов, по-видимому, приводит к сущ ествованию всех трех областей протекания реакции (кинетической, диффузионной, промежуточной), сменяющих друг друга в ходе процесса. [c.153]

    Однако вероятная величина максимального отклонения эффективности от его среднего значения при данном уровне значимости и числе степеней свободы для комбинированной модели почти на порядок ниже, чем для диффузионной модели. Это указывает на то, что экспериментальные данные ближе всего к теоретическим, рассчитанным по комбинированной модели. [c.134]

    Заряд капля может получить при соприкосновении с одним из электродов (индукционная зарядка) за счет направленного движения ионов, которое может возникать при большом градиенте напряженности вблизи электродов за счет диффузионного механизма [30, 31] и т. д. Максимальный заряд, который может получить проводящая сферическая капля, будет равен [c.22]

    Первый или второй путь осуществляется в зависимости от соотношения кинетических и диффузионных параметров первой и второй стадий. В случае Е бензин полностью разлагается (так как скорость диффузии усредненной молекулы бензина от внешней поверхности частиц катализатора меньше скорости ее распада). Поэтому максимальная температура процесса не может достигать такой, при которой осуществляется переход от случая Д к случаю Е. [c.220]

    При сравнении результатов, полученных при расчете выжига кокса с помощью изотермической и неизотермической нестационарной моделей зерна, показано [153], что максимальные разогревы по двум моделям близки и достигаются в зависимости от условий выжига при 10-20% конверсии углерода. Совпадают и времена выжига до 85% конверсии, если процесс протекает в диффузионной области. При горении [c.73]

    Как видно из уравнений (4.15), неизотермический процесс выжига кокса на зерне катализатора характеризуется параметрами и Л0 . Величина 1 , называемая в литературе [144, 157] параметром Тиле, характеризует область протекания процесса-кинетическую или диффузионную. Значения AQj определяют максимальный разогрев зерна и зависят от величин адиабатических разогревов АО д и модифицированного параметра Льюиса Ье = 0 Ср[к (значение последнего лежит в интервале от 0,01 до 0,10 [157]). На основе анализа данных для промышленных каталитических процессов, приведенных в работе [157], принято Ье = 0,037. [c.75]

    Таким образом, можно констатировать, что математические модели слоя катализатора достаточно хорошо разработаны только для регенераторов с неподвижным слоем. Для таких аппаратов исследован характер движения зоны горения по слою катализатора и получены количественные оценки максимального разогрева в слое и общей продолжительности выжига кокса до определенных конечных степеней закоксованности катализатора. Измененный вариант двухфазной диффузионной модели неподвижного слоя может быть с успехом использован также для исследования процесса выжига кокса в регенераторах с движущимся слоем. Разработка подобных моделей для регенераторов с псевдоожиженным слоем катализатора-задача, стоящая перед методом математического моделирования. [c.92]

    На рис. 6 приведены профили фильтрационной скорости V, максимальной температуры 0, степени превращения и скорости химической реакции на катализаторе в момент установления. Рост степени неравномерности V приводит к резким градиентам 0, I и по длине слоя, сосуществованию в одном слое катализатора диффузионных и кинетических режимов каталитического процесса и, как следствие, наличию горячей и холодной зон в реакторе. Естественно, это ухудшает эффективность работы реакторов с неподвижным слоем катализатора. [c.92]

    Во многих каталитических системах наблюдается диффузия какого-нибудь промежуточного вещества в приповерхностные слои катализатора. Этот эффект в предположении быстрой диффузии учитывается в (4.22) коэффициентом и, который равен отношению максимально возможного количества адсорбированных молекул вещества Вг к общему количеству поверхностных активных центров. Если диффузионный процесс протекает относительно медленно, а так чаще всего и бывает, то система (4.22) дополняется соответствующим дифференциальным уравнением с частными производными, которые учитывают конечную скорость диффузии компонента В. Однако представляется очевидным, что каких-либо новых качественных результатов это не дает. [c.118]

    Искажение, связанное с переносом внутри зерен (т. е. внутридиффузионное торможение) сохраняется. Его снятие требует уменьшения размера зерен катализатора при испытании. Сохраняя неизменным химический состав и меняя размеры зерен катализа--тора, можно выявить влияние пористой структуры на активность контактной массы, т. е. определить внутри-диффузионное торможение при различных размерах, а также максимальный размер зерен, соответствующий переходу от внутридиффузионной к кинети--ческой области. [c.287]

    Значения диффузионных потенциалов, опытные и рассчитанные по уравнению (6.62), приведены в табл. 6.3. Максимальные диффузионные потенциалы наблюдаются в тех случаях, когда один из растворов — кислота. Это становится нонятным, если вспомнить, что подвижность ионов водорода, присутствующих в растворах кислот (в данном случае в растворе хлорсводорода), значительно превосходит подвижности всех других ионов. Из табл. 6.3 видно, что расхождение между опытными и вычисленными значениями диффузионных потенциалов хотя и невелико, все же достигает нескольких тысячных вольта и превосходит возможные ощибки опыта. Поэтому пользоваться уравнениями (6.59) и (6.62), а также общим уравнением (6.58) для внесения поправок на диффузионные потенциалы при расчетах высокой точности (определение э.д.с., расчеты величин АО, Д// и т. д.) не рекомендуется. [c.152]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    Максимальное значение этой величины равно 1,5 и достигается при обтекании потоком идеальной жидкости. На практике такому случаю соответствует обтекание газового пузырька при больших значениях Ке. Критерий Шервуда при этом достигает максимального значения и определяется формулой (4.16). Она широко известна как формула Хигби, хотя впервые была получена Буссинеском в приближении теории диффузионного пограничного слоя при обтекании капли потоком идеальной жидкости [280]. [c.199]

    Уравнение позволяет оценить максимальную разность температур между центром зерна катализатора и его поверхностью. Для этого в уравнение (6.31) подставляют минимальное значение с, т. е. нуль для необратимых реакций и термодинамически равновесную концентрацию для обратимых. Используя этот метод, Прейтер провел расчет для эндотермической реакции дегидрирования циклогексана (АЯ = 52,54 ккал1моль), которая осуществлялась на промышленном катализаторе при 400° С, и показал, что температура в центре зерна может быть ниже температуры поверхности, по крайней мере, на 53° С. Шилсон и Амандсон [32] развили эту теорию применительно к сферическому зерну и определили его температуру как функцию координат они показали, что повышение температуры для экзотермических реакций может составлять до 60° С. В случае катализатора, изготовленного из высокопористого. материала (т. е. с хорошими диффузионными характеристиками) с плохой теплопроводностью разность температур, естественно, будет больше. [c.184]

    Свободная конвекция, наложенная на вынужденное движение в канале, формирует в условиях отсоса сложное смешанноконвективное движение, которое деформирует диффузионный пограничный слой и существенно меняет локальные характеристики массообмена. Интерферограммы и распределения безразмерной концентрации показаны на рис. 4.17 и 4.18. На начальном участке, до потери концентрационной устойчивости (Яа< <Кас), развитие диффузионного пограничного слоя идентично процессу с устойчивым распределением плотности. При Ка = Кас появляются конвекция и деформация профиля скорости. Далее течение принимает форму вихревых шнуров, что приводит к сильным пульсациям толщины диффузионного пограничного слоя, причем амплитуда пульсаций имеет определенную периодичность, достигая максимального значения в зоне формирования потенциала неустойчивости. [c.145]

    По мере истощения смеси исходного состава Х >х и развития диффузионного пограничного слоя по длине мембранного элемента происходит уменьшение доли легкопроникающего компонента и приближение локальных к. п.д. проницания к максимальному значению. При xf<.x заметно смещение функции г]пр = т](д ш) влево от точки максимума (см. рис. 7. ), т. е. ухудшение термодинамического совершенства процесса селективного проницания. [c.262]

    ДО установлено, что на поверхности Ag металлоид сильно адсорбируется в анионной форме и медленно удаляется во время катализа [100] максимальная селективность получается при очень малых заполнениях поверхности (менее IS/100 Ag) [101]. Противоречивые данные, опубликованные в литературе о кинетике этой реакции, по-видимому, указывают на сильные изменения порядка реакции в зависимости от температуры, парциальных давлений, а иногда и диффузионных осложнений. Эмпирические значения а и Ь в выражении = = , где А — это С2Н4 и О — это О2, варьируют от 1 до [c.166]

    Все элементы критерия оптимальности зависят от хишгаеского состава катализатора . Методами, изложенными в главе IV, ия чисто эмпирическим поиском удается наметить один или несколько вариантов состава химически активного катализатора. Однако для экономически обоснованного выбора катализатора следует уточнить зависимость критерия оптимизации от состава катализатора для выбранных вариантов. Такую зависимость можно выявить дополнительной постановкой специально спланированных направленных экспериментов и выразить величины G, г]), tp g, iper и другие как функции состава катализатора, например в виде пОлиноШв. Либо, что менее строго, но требует меньше времени, произвести расчет критерия для ряда вариантов состава катализатора. В первом случае оптимизацию по критерию можно провести методами математического программирования, а во втором просчетом и сравнением значения критерия оптимизации при различных вариантах. При этом, конечно, исследования должны проводиться с максимальным исключением влияния диффузионных факторов на результаты. Тогда оптимизацию структуры и формы катализатора можно проводить для данного состава как второй этап решения общей задачи оптимизации катализатора. [c.189]

    Определяющей характеристикой процессов массопередачи, протекающих в двухфазных потоках, является взаимодействие фаз, от которой зависит величит1а межфазной поверхности. Поэтому аппараты для проведения процессов массопередачи должны конструироваться так, чтобы в них максимально развивалась поверхность контакта. В соответствии с этим и в основу классификации диффузионной аппаратуры положен принцип образования межфазной поверхности [I, 2]. [c.255]

    Оценка влияния диффузионных эффектов в эмульсионной полимеризации. Обычно математическое описание кинетики процесса эмульсионной полимеризации сводят либо к детерминированной кинетической модели [15—22], либо к модели, основанной на вероятностных представлениях [23—281. В основе этих подходов лежит допущение о том, что скорость постзшления мономера к по-лимер-мономерным частицам превосходит скорость полимеризации в последних, т. е. процесс протекает в кинетической области. Экспериментальной и теоретической проверке этого положения в эмульсионной полимеризации уделялось сравнительно мало внимания. Влияние диффузии на скорость полимеризации может быть значительным, когда скорость полимеризации в частицах превосходит скорость поступления мономера к нолимер-моно-мерным частицам (внешнедиффузионная область) и скорость диффузии мономера и радикалов внутри частицы (внутридиффузион-ная область). Одними из немногих работ, где делается попытка получить качественные и количественные оценки диффузионных явлений в эмульсионной полимеризации, являются работы [29, 30]. Автор работы [30] получает скорость максимального диффузионного потока к поверхности частицы в виде [c.146]

    В макростадиях гелевой диффузии и химического превращения сополимера 1) гранула сополимера является изотропным телом, свойства которого не изменяются по сечению в ходе образования продукта 2) выполняются условия равнодоступности поверхности 3) концентрация реагентов в зоне максимальной скорости химического превращения сополимера определяется условиями диффузионного транспорта исходного вещества в зону. [c.338]

    Специфика физикохимии процесса сульфирования и условия его проведения обусловливают решение задачи моделирования процесса при следующих допущениях 1) каждая гранула сополимера в условиях интенсивного перемешивания окружена сферическим слоем жидкой сферы (сферическая ячеечная модель) 2) жидкая среда идеально перемешана 3) гранула сополимера является изотропным телом, свойство массопроводимости которого не меняется по сечению в ходе образования продукта реакции 4) выполняются условия равнодоступности поверхности 5) концентрация реагентов в зоне максимальной скорости химического превращения сополимера в ионит определяется диффузионным транспортом исходного вещества. [c.352]

    Так,для аппарата диаметром 1,0 м при Я. = 0,85 эффективность прямотока увеличивается на 60%. Следует отметить, что в аппарате диаметром 1,0 м значение зоны полного перемешивания 2 сохраняется максимальным, что способствует большему перекрытию диффузионной зоны и зоны полного перемешивания на смежных тарелках, что обусловливает снижение эффективности массообмена в аппарате при противотоке. Таким образом, при А. < 1 и т1оу = 0,6 - 1,0 необходимо учитывать реальную картину структуры потока не только жидкой, но и паровой фазы и полностью опровергается утверждение о равенстве эффективности работы аппаратов с прямотоком и противотоком жидкости на смежных тарелках. [c.200]

    В идеале кинетические уравнения должны помочь решить задачу сколько катализатора следует помещать в каждый слой данного реактора, чтобы достичь максимальной экономической эффективности. Но многие уравнения, опубликованные в литературе, имеют малое практическое значение или вообще его не имеют, так как не очень точно описывают активность катализатора во всем интересующем интервале условий, и в частности при высоких степенях превращения SO2 в SO3. Кроме того, наблюдаемые скорости определяются не только кинетическими факторами. Иа эффективность работы таблеток катализатора могут в значительной мере влиять различные процессы внешнего или внутреннего (внутри таблеток) массо- и теплоперено-са. В работах [22, 41, 52] детально обсуждаются проблемы эффективности катализатора. Диффузионные процессы можно расположить в порядке убывания их важности внутренний массоперенос > внешний массо- и теплоперенос>внутренний теплопе-ренос. [c.250]

    Влияние размеров зерен катализаторов. Первоначально изучалось влияние размеров зерен йз на характеристики стационарных режимов процесса синтеза аммиака. Расчеты выполнялись для первого слоя двухполочного аппарата со временем контакта 0,064 с. Скорость фильтрации реакционной смеси, пересчитанная на нормальные условия, 4,56 м/с. При увеличении размеров зерна катализатора с 5 до 10 мм степень превращения на выходе из первого слоя уменьшалась с 13,2 до 9,7%, что связано с уменьшением степени использования внутренней поверхности зерна катализатора, обусловленного наличием диффузионного торможения. Температурные градиенты внутри зерна в стационарном режиме невелики и в зоне максимальных температур градиентов по слою не превышают 1 (для зерна 2 мм) и 3°С (для 5 мм зерна). Для зерна катализатора размером 10 мм температурный перепад в зерне достигает 6°С в стацпонарном режи.ме. Однако перенос тепла внутри зерна не оказывает заметного влияния на характеристики стационарного процесса. Например, были выполнены расчеты стационарного режима (для зерна 2 мм) и 3°С (для зерна 5 мм). Для зерна катализатора проводности Яз = 0,5-10 ккал/(м с град). При этих значениях параметров в зерне образуется перепад температур между поверхностью и центром 6° (если зерно находится в зоне максимальных температурных градиентов по длине слоя). На выходе из первого слоя двухполочного реактора оптимальная степень превращения достигала 2 = 9,7% аммиака, а температура Г = 474°С. Для изотермического зерна катализатора выходные характеристики первого слоя составляли соответственно 2 = 9,6% и Г = 472°С. Таким образом, при расчетах стационарных режимов зерна катализатора можно считать изотермическими. [c.212]


Смотреть страницы где упоминается термин Диффузионный максимальный: [c.315]    [c.265]    [c.216]    [c.367]    [c.9]    [c.97]    [c.53]    [c.80]   
Основы полярографии (1965) -- [ c.73 ]




ПОИСК







© 2025 chem21.info Реклама на сайте