Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристалл кальцита, структура

    Карбонат кальция в результате процесса кристаллизации обладает свойствами, характерными для конденсационно-кристалли-зационных структур. Он способствует разрушению нефтяной эмульсии, однако не может сорбировать на своей поверхности больших количеств нефтепродуктов. Гидроокись магния относится к коагуляционному типу и по своей структуре сходна с такими гидроокисями, как А1(0Н)з, Ре(0Н)2 и Ре(ОН)з. Последние обладают большой активной поверхностью, способной сорбировать из воды значительное количество органических веществ, в связи с чем происходит одновременно осветление и удаление эмульгированных нефтепродуктов. [c.18]


    На рис. 14-10 показаны кристаллические структуры нескольких типов ионных кристаллов. Хлорид цезия кристаллизуется в структуру, в которой и катион, и анион имеют координационное число 8. Сульфид цинка образует кристаллы в одной из двух структур-так называемой структуре цинковой обманки и структуре вюртцита, в которых у катиона и аниона координационное число 4. Фторид кальция кристаллизуется в так называемой структуре флюорита, где катион имеет координационное число 8 (каждый ион кальция окружен восемью фторид-ионами), а анион-4. Одной из кристаллических форм диоксида титана является структура рутила, в которой координационные числа для катиона и аниона разны соответственно 6 и 3. [c.609]

    Хлористый кальций — бесцветное расплывающееся кристаллическое вещество с ромбической структурой кристаллов. [c.33]

    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]

    Таким образом, в результате диссоциации карбоната кальция, когда разрушается кристаллическая решетка кристаллов кальцита, получается новое вещество с сильно разрыхленной структурой. Это вещество образовано микрокристаллами окиси кальция. Оно отличается сильно развитой внутренней микропористостью, и поэтому обладает большим избытком энергии. Крупнокристаллическая известь отличается меньшей реакционной способностью, чем обычная. [c.173]

    Механизм гидратации алюминатов кальция. Гидратация алюминатов кальция начинается с адсорбции воды на поверхности кристаллов, при этом слой жидкости наблюдается не на всей поверхности, а на отдельных ее активных центрах, роль которых играют следы дислокаций, выходящие на поверхность кристалла, а также атомы кальция, имеющие особое расположение в структуре кристаллической решетки алюмината кальция. Так, в структуре СА из трех видов атомов кальция ( ai, Саг, Саз) активным центром может являться Са В С3А, по мнению А. А. Старосельского с соавторами, имеются две лишние молекулы СаО, которые чрезвычайно активны. Реакция идет по схеме  [c.328]


    При равной степени дефектности кристаллов прочнее из них оказываются те, у которых выше теоретическая прочность, обусловленная их химическим составом и строением кристаллической решетки. Поэтому во всех случаях наиболее прочными элементами кристаллической структуры цементного камня являются в первую очередь игольчатые кристаллы низкоосновных гидросиликатов кальция типа SH. Увеличение их доли в твердеющей системе способствует упрочнению цементного камня. [c.342]

    Молекулярные сита получаются путем термической дегидратации природных или синтетических цеолитов — алюмосиликатов кальция или натрия. Кристаллы цеолитов содержат большое количество мелких, однородных пор, пронизанных еще более мелкими порами. В порах содержится вода. При дегидратации вода удаляется, но структура кристаллов сохраняется. Молеку-ляные сита характеризуются адсорбционной способностью, или емкостью, которую определяют (в %) по формуле [c.50]

    Знание электронной структуры указанных металлов позволяет легко объяснить, почему именно так изменяются их свойства. Атом калия имеет только один электрон сверх заполненной оболочки аргона. Этот электрон может быть использован для образования одинарной ковалентной связи с другим атомом калия, как в двухатомных молекулах Кг, присутствующих в парах калия вместе с одноатомными молекулами К. В кристаллах металлического калия каждый атом калия имеет некоторое число соседних атомов, расположенных на одинаковом расстоянии. Он удерживается соседними атомами благодаря единственной ковалентной связи, которая резонирует между двумя соседними атомами. В металлическом кальции на каждый атом кальция приходится два валентных электрона, и это позволяет каждому атому образовывать две связи с соседними атомами. Такие две связи резонируют между положениями кальций — кальций, создавая общую связывающую силу в этом металле, в два раза превышающую силу связи между атомами в металлическом калии. Аналогичным образом у скандия с его тремя валентными электронами связь в три раза прочнее, чем у калия. [c.493]

    Из веществ с общей формулой МХг двуокись кремния (отношение радиусов 0,29) образует кристаллы с тетраэдрической координацией четырех ионов кислорода вокруг каждого иона кремния фторид магния (отношение радиусов 0,48) и двуокись олова (отношение радиусов 0,51) образуют кристаллы с октаэдрической координацией шести анионов вокруг каждого катиона (структура рутила, рис. 18.2), а фторид кальция (отношение радиусов 0,73) образует кристаллы с кубической координацией восьми анионов вокруг каждого катиона (структура флюорита, рис. 18.3). Координационное число увеличивается по мере возрастания отношения радиусов, как показано на рис. 18.1. [c.515]

    Из более сложных кристаллов рассмотрим только кальцит, СаСОз (рис. 37). Ионы СО , являющиеся структурной единицей кристалла, окружены 6 ионами кальция. Внутренняя структура самого иона СОз" отвечает плоскому правильному треугольнику, в центре которого находится углеродный атом и в вершинах — кислородные атомы. [c.130]

    Цеолиты представляют собой кристаллические пористые алюмосиликаты, отличашциеся строго регулярной структурой пор. а качестве катионов в состав цеолитов входят натрий, калий, кальций и другие металлы [7]. Пористая структура кристаллов цеолита образована жестким трехмерным алюмосиликатным каркасам, состоящим из тетраэдров 5 02 л АЮ4 [ 8]. Отрицательиый заряд кислородных тетраэдров компенсируется катионами щелочных и целочноземельвых металлов, не связанных жестко со структурой и способных обмениваться на другие катионы, в связи с чем цеолиты являются прекрасными катионообменными веществами. [c.172]

    Последующая стадия процесса — созревание суперфосфата, т. е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживании суперфосфата в течение 6—25 сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н2Р04)2-Н20. Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, ио и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до онтпмалыюй и температуры. [c.146]

    В СВЯЗИ С ЭТИМИ трудностями В последнее время стали применять молекулярные сита, что дало возможность поставить на более высокий уровень получение чистых и особо чистых веществ. Молекулярные сита представляют собой пористые кристаллы цеолитов. Цеолиты — это водные алюмосиликаты кальция, натрия и других металлов. Известен целый ряд природных цеолитов (шабазит, мор-денит, гмелинит и др.), в структуре кристаллов которых имеются полости, сообщающиеся друг с другом через относительно узкие окна (рис. 123). Число таких полостей в кристалле обезвоженного цеолита очень велико. В цеолитах некоторых типов общий объем полостей достигает около половины всего объема кристалла. Внутренняя поверхность этих полостей составляет несколько сот квадратных метров в 1 г цеолита, благодаря чему цеолиты служат хорошими адсорбентами. Размер этих окон очень мал и примерно соответствует [c.309]


    Избирательное травление и растворение минералов. Путем обработки поверхности шлифа (или скола) растворами определенных солей удается селективно растворить кристаллы одного минерала, не затрагивая кристаллов других минералов. Так, при обработке поверхности скола клинкера метиловым эфиром салициловой кислоты растворяются кристаллы СзЗ и СгЗ и сохраняют первоначальную форму кристаллы алюминатов и алюмоферритов кальция. При частичном растворении кристаллов алнта и белита удается вскрыть их тонкую внутреннюю структуру — двойниковую текстуру, сростки и др. [c.143]

    Решетчатую структуру имеют также цеолитные минералы. Они представляют собой водные кристаллические алюмосиликаты с общей формулой (Naa, Са)0-А120з nSiOaX ХтНгО, где я = 2, 3, 4, 6, а ш изменяется от О до 8. (В качестве катионов возможно также присутствие калия и бария вместо натрия и кальция). Некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является близкий размер обменивающихся ионов. Так, ионы натрия Na (радиус 0,98) легко обмениваются на ионы кальция Са2+ (радиус 1,04 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Это явление находит практическое применение в процессах умягчения воды с помощью так называемого пермутита — искусственно получаемого алюмосиликата. [c.111]

    В отличие от портландцементного камня отвердевший глиноземистый цемент обладает значительно большей плотностью и не содержит свободной гидроокиси кальция. Кроме того, структура отвердевшего глиноземистого цемента своеобразна — в нем промежутки между кристаллами двухкальциевого гидроалюмината заполнены гидроокисью алюминия, которая как бы окутывает кристаллы СгАН . Совокупностью этих причин объясняется повышенная по сравнению с портландцементом стойкость глиноземистого цемента в пресной воде, в водах, содержащих сульфаты магния и кальция, в слабых растворах многих минеральных и органических кислот, в средах, содержащих сахар, а также при соприкосновении с металлическими алюминием и свинцом. [c.196]

    Мицеллярное строение наиболее распространенных известковоглинистых шламов можно представить следующим образом. В пространственной структуре существуют центры (узлы)—комплексные образования с ядром из карбоната кальция размером 5— 20 мкм. На поверхности этих частиц, заряженных обычно отрицательно, адсорбируются из водного солевого раствора молекулы воды и катионов металлов. Наряду с ними поверхностью частиц могут притягиваться положительно заряженные мелкие частицы гидроксидов железа, алюминия и других веществ. Этот слой является первичным слоем противоионов на ядре (рис. 8.1). Вокруг такой частицы располагаются более мелкие кристаллы глинистых компонентов (размером менее 0,5 мкм), представляющие собой, в свою очередь, сложные образования. Благодаря сильно развитой поверхности частицы глины обладают большим запасом поверхностной энергии. Ненасыщенные связи поверхностных узлов решетки способны прочно удерживать комплексы силикагеля, гиббсита, гидроксида железа. [c.274]

    При гидратации минералов клинкера образуются различные по составу и структуре кристаллы гидросиликатов, гидроалюминатов и гидроалюмоферритов кальция, их твердых растворов, комплексных соединений, при этом часть из них выделяется в скрытокри-сталлнческом (гелевидном) состоянии. Большое разнообразие кристаллогидратов в цементном камне сильно усложняет его изучение. [c.305]

    SH (I)] (обозначают также SH — В) имеет отношение СаО Si02 0,8—1,5 и содержит 0,5—2,5 молекулы Н2О. ГСК кристаллизуются в виде тонких пластинок типа фольги, часто дефор-мировакных (скрученных). Базальное межплоскостное расстояние с изменяется от 0,9 до 1,4 нм, сокращаясь с уменьшением отношения СаО Si02 от 1,5 до 0,8. Удельная поверхность кристаллов 130—380 MVr. При нагревании SH (I) превращается в волластонит. Одной из причин широкого изменения химического состава и структуры является прорастание гидросиликатов кальция гидроксидом кальция, соединениями алюминия и др. [c.305]

    Образование сростков кристаллов в процессе формирования физической структуры цементного камня зависит от множества факторов особенностей кристаллической структуры срастающихся кристаллов, состава и свойств водного раствора, ориентации кристаллов, усилия их сжатия между собой и т. д. Установлено, что закономерные сростки кристаллов гидросиликатов и гидроалюминатов кальция, портландита и гипса (структура срастания, прорастания и врастания) появляются на стадии зародышеобразования в пересыщенном по отношению к соответствующим гидратам водном растворе. Зародыши сростков кристаллов (друзы, лучистые агрегаты, дендриты) со временем развиваются, достигая размеров, определяющихся наличием свободного пространства и питательного вещества. Прочность контактных зон кристаллических сростков, возникших из зародышей, соизмерима или даже несколько выше прочности кристаллических ветвей сростка. [c.342]

    Пространственная решетка кристаллов гидросиликата кальция изменяется в зависимости от содержания воды. Эти кристаллы имеют слоистую структуру, как у монтморнллонитовой глины, и молекулы воды могут проникать в пространство между слоями, расширяя решетку. Данные об аналогичном явлении были получены и для четырехкальциевого гидроалюмината. Представляет интерес то обстоятельство, что удельная поверхность схватившегося цемента, определенная по методу адсорбции водяного пара, в 2—3 раза больше, чем полученная по методу адсорбции азота. Эту разницу следует приписать проникновению молекул воды между слоями решетки или в межкристаллические промежутки, недоступные для азота. Аналогичное явление наблюдается у глинистых минералов. Было установлено, что у каолинита, который обладает нерасширяющейся решеткой, адсорбция азота и водяного пара происходит на одной и той же поверхности. Однако у монтмориллонита, обладающего расширяющейся решеткой, вода проникает в структуру и адсорбируется на внешней поверхности. [c.360]

    Как отмечает И. В. Кравченко, расширение цементного камня является следствием интенсивного роста кристаллов гидратных новообразований в определенный период развития кристаллизационной структуры твердеющего цементного камня. Рост кристаллов расширяющего компонента (гидросульфоалюмината) должен достичь максимума в совершенно определенной отрезок времени, именно тогда, когда в цементном камне закристаллизовавшихся участков достаточно для того, чтобы растущие кристаллы могли их раздвигать и вызывать расширение. При быстром образовании гидросульфоалюмината кальция в период, когда камень еще не приобрел достаточной жесткости, его расширение не фиксируется. Продолжительный рост кристаллов гидросульфоалюмината кальция обусловливает большое расширение. Если добавить больше гипса к обычному цементу, то последние его порции будут связываться в гидросульфоалюминат кальция в отдаленные сроки, когда структура цементного камня приобрела высокую прочность. Рост его кристаллов вызовет не только расширение, но и разрушение камня. Именно ускоренным ростом кристаллов эттрингита по сравнению с ростом кристаллов других гидратных новообразований объясняется тот факт, что при образовании гидросульфоалюмината кальция возникает расширение цементного камня. Согласно этому воззрению расширение и разрушение цементного кдмня вызывает силы кристаллизационного давления в процессе роста кристаллов эттрингита. [c.361]

    Упомянем кратко дисперсные системы, в которых газовые, жидкостные или твердые включения распределены в объеме твердой фазы, либо образуют непрерывную систему взаимосвязанных прослоек или каналов в непрерывной твердой фазе в этом последнем случае деление на дисперсионную среду и дисперсную фазу может быть проведено только условно. Такие системы чрезвычайно широко распространены в природе и имеют важнейшее значение в технике. К ним относятся грунты (сухие и оводненные), пемзы, туфы и все полиминеральные горные породы, содержащие, как правило, несколько твердых фаз (часто весьма высокодисперсных и даже аморфных), а также газовые и жидкостные включения. К этому же классу дисперсных систем относятся многочисленные материалы современной техники сплавы, строительные материалы, керамика, сорбенты, катализаторы, пенопласты и другие пеноматерналы (см. 2 данной главы), раскристаллизованные стекла (ситаллы) и т, д. К этому же типу систем, в известной мере, можно отнести ткани растений и животных и особенно кости. — сложную систему, в которой сверхтонкие, обладающие прочностью, близкой к теоретической, кристаллы гидрофосфа-та кальция (апатита) армируют своеобразные структуры фибрилл коллагенов — спирали, навитые с разным шагом и в различных направлениях. [c.305]

    Кристаллы и кристаллические сростки низко- и высокоосновных гидросиликатов кальция различного состава общей формулы Са [5 / (О, 0Н),1 (НгО) (Са (ОН) (где х, г/, г > О, т, я > 0) составляют до 85% массы затвердевшего материала. В этой массе могут присутствовать одновременно кристаллы гидросиликатов кальция самого различного размера в пределах 10 —10 см. Степень их совершенства колеблется от аморфизированного гелеобразного состояния до высокосовершенных монокристаллов и кристаллических сростков с идеальной кристаллической структурой. Последние преобладают в камне, полученном при высокотемпературной гидратации вяжущего [46, 47, 56—58]. [c.32]

    Маловероятно, чтобы при таком невысоком содержании вяжущего вещества образовалась сплошная кристаллизационная структура, в ячейках которой мог бы разместиться инертный наполнитель. Основным доказательством существования в подобной системе единого пространственного кристаллизационного каркаса считается наличие определяемых рентгенографически сростков гидроалюминатов кальция и необратимость структуры после ее разрушения [274]. Однако наличие сростков еще не означает обязательного пространственного срастания кристаллов во всем объеме системы, хотя, безусловно, они должны упрочнять структуру и их разрушение необратимо. Но отсутствие тиксотропного восстановления подобных структур после разрушения связано с невоспроизводим остью важнейших первоначальных условий образования этой сложной дисперсной системы. Наконец, в системе сравнительно мало свободной воды и первоначальной высокодисперсной коллоидной фракции новообразований, для того чтобы могли быть обеспечены благоприятные условия для броуновского движения частиц. Последнее является непременным фактором, обуславливающим тиксотропию глинистых, типично коагуляционных, пространственных дисперсных структур. [c.103]

    Значительно чаще такие новообразования как карбонаты (имевшиеся в структуре самого образца, а не возникшие при препарировании), гидроокись кальция, гидроалюминаты, гидросульфоалюминаты и гидрогранаты имеют свойственную им форму гексагональных пластинок, кубов, палочек, призм, листочков, ромбовидных частиц и изометричных образований. Портлапдит, кальцит и гидроалюминат хорошо окристаллизованы, что видно из электронограмм их кристаллов. Обычно получить дифракцию с монокристалла почти не удается, так как несколько частиц гидратов обязательно совместно присутствуют в том минимальном микроучастке, с которого еще можно снять дифракцию, или располагаются друг на друге. [c.218]

    Барит, или тяжелый шпат, представляет собой безводный сульфат бария, кристаллизующийся в той же ромбической сингонии, что и сульфат кальция (ангидрит), но отличающийся от него структурой и размером кристаллов. Как и железистые утяжелители, барпт обладает кристаллической решеткой с прочной ионной связью и максимально плотной упаковкой (координационное число — i2). Устойчивость решетки, образованной крупным комплексным анионом [804] , обеспечивается лишь при сочетании его с крупным двухвалентным катионом. Наибольший атомный радиус у бария (2,24 А). У других катионов — стронция и свинца, образующих безводные сульфаты (целестин и англезит), — размеры атомов меньше (2,15 и 1,741). [c.46]

    Рассмотрим еще раз гранецентрированную кубическую решетку, характерную для структуры алмаза. В алмазе центры малых кубов заняты через один атомами того же типа, что углы и центры граней большого куба. В цинковой обманке эти места заняты атомами (или ионами) другого типа. Если в центрах всех малых кубов находятся атомы, отличающиеся от атомов в углах и на гранях, то получается структура, изображенная на рис. 9. Первым изученным примером этого типа был фторид кальция СаГд, по которому эта кубическая решетка [7] и получила свое название. Каждый ион кальция окружен восемью ионами фтора, находящимися на расстоянии 3/4 от него, а каждый ион фтора окружен находящимися на том же расстоянии четырьмя ионами кальция. В табл. 7 приведены постоянные решеток некоторых кристаллов, принадлежащих к этому в высшей степени симметричному типу. [c.481]


Смотреть страницы где упоминается термин Кристалл кальцита, структура: [c.129]    [c.322]    [c.577]    [c.506]    [c.522]    [c.452]    [c.284]    [c.367]    [c.98]    [c.258]    [c.242]    [c.308]    [c.268]    [c.27]    [c.182]    [c.364]    [c.142]    [c.111]    [c.183]    [c.419]    [c.595]    [c.154]   
Краткий курс физической химии Издание 3 (1963) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Кальцит, структура

Кристалл структура



© 2025 chem21.info Реклама на сайте