Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты межмолекулярные ассоциации

    Водородная связь между атомами А и В двух различных молекул — межмолекулярная водородная связь — приводит к ассоциации молекул, проявляется в аномально высоких температурах кипения, плавления и других свойствах образовавшихся веществ. Из примеров таких соединений приведем схемы (НгО)п, (НР) , (К Н.ч)п, карбоновых кислот и спиртов  [c.127]


    В отличие от спиртов, межмолекулярная ассоциация карбоновых кислот имеет регулярный характер жидкие карбоновые кислоты образуют димеры. В парах и водных растворах димеры распадаются на мономеры. [c.198]

    Молекулярная ассоциация большей частью изучалась в жидкостях и растворах, в которых, как это можно предполагать, межмолекулярные водородные связи непрерывно разрываются и вновь возникают, не обладая постоянным стереохимическим расположением. В кристаллах же между молекулами способны образовываться постоянно направленные водородные связи, имеющие решающее значение для типа упаковки молекул в кристалле. Здесь возможны широкие вариации—от кристаллов, состоящих из спаренных молекул (как в карбоновых кислотах), до наиболее часто встречающихся бесконечных двух- и трехмерных молекулярных комплексов. [c.220]

    Карбоновые кислоты образуют межмолекулярные водородные связи за счет карбонильного кислорода одной молекулы кислоты и водородного атома гидроксильной группы другой молекулы. Подобная ассоциация может быть циклической или линейной  [c.159]

    Вязкость эфиров полиоксипропиленгликолей зависит от структуры концевой группы и строения углеродного скелета взятых для этерификации карбоновых кислот. Высокая вязкость при 20 °С простых моноэфиров, полученных оксипропилированием нафтеновых спиртов (см. рис. 25) обусловлена, по-видимому, наличием свободных концевых ОН-групп. При их отсутствии образование водородных связей (межмолекулярная ассоциация) затруднено. Смешанные эфиры жирных кислот, несмотря на их более высокую молекулярную массу, имеют низкую вязкость при 20 °С (с м. [c.117]

    Особые полосы поглощения в инфракрасной области спектра, относящиеся к водородной связи, наблюдаются у газообразного фтористого водорода и у аниона HF кислых фторидов . Исследование инфракрасных спектров поглощения спиртов и карбоновых кислот [126] в растворах однозначно подтверждает существование водородных мостиков. Например, для УКСУСНОЙ кислоты частота ОН 3530 сл (Я=2,83 <), характерная для мономера, смещается для димерной кислоты к 3080 см (А=3,25 С другой стороны, у анилина и у других аминов не установлено заметного смешения основной полосы поглощения, так что здесь межмолекулярный водородный мостик если и существует, то он очень слаб. Пример с анилином интересен потому, что по сравнению с алифатическими аминами анилин обладает высокой точкой кипения, которая равна точке кипения фенола причиной этого могла бы считаться водородная связь. Изучение инфракрасного спектра поглощения, однако, указывает, что причина высокой точки кипения анилина должна заключаться в чем-то другом . Хотя амины не склонны к ассоциации сами с собой с образованием водородной связи, но связанный с азотом водород все же способен к образованию связи с другими подходящими молекулами, а их азот может становиться посредником в образовании свя. и с активным водородом других соединений .  [c.246]


    Обычно измерения выполняются при ко центрации примерно 0,005 моль1л такая концентрация считается достаточно низкой, чтобы исключить возможность межмолекулярной ассоциации в соединениях, не принадлежащих к числу образующих исключительно прочные продукты ассоциации (карбоновые кислоты, амиды и др.). Однако в вопросе о допустимых концентрациях следует соблюдать осторожность, поскольку в последнее время наблюдалось цесколько случаев межмолекулярной ассоциации спиртов при концентрации 0,005 моль л. Такая аномальная межмолекулярная ассоциация (главным образом димеризация) наблюдалась [c.121]

    Если соседние с гидроксильной группой объемные заместители препятствук межмолекулярной ассоциации, то полоса валентного колебания связи 0-Н может быть очень узкой. Этот вывод справедлив и по отношению к спектрам других молекул с внутримолекулярной водородной связью, поскольку Энергия водородной связи в большей или меньшей мере определяется внутренней структурой сшой молекулы, а концентрация изучаемого вещества не оказывает существенного влияния на характер спектра. Очень прочны также некоторые димеры. Например, алифатические карбоновые кислоты существуют практически только в виде димеров, поэтому даже [c.59]

    Другой тип комплекса в органической фазе образуется при взаимодействии карбоксилатов металла с недиссоциированной, мономерной или димерной карбоновой кислотой, что приводит к образованию соединения MX j (НХ) , в котором сумма т — п не обязательно равна координационному числу металла (здесь X — органический остаток). В настоящее время еще недостаточно экспериментальных данны , чтобы определить факторы, влияющие на образование таких комплексов [80. 83—88]. Наиболее вероятными факторами являются энергия гидратации металла, степень межмолекулярного взаимодействия молекул экстрагента через водородные связи и сте-рпческая характеристика. Оба типа соединений в органической фазе способны к ассоциации [83, 84, 89]. [c.33]

    Некоторые из методов, описанных ниже, были разработаны Бьеррумом [6] и Крейцером [36] для исследования равновесий в газовой фазе. При исследований ассоциации в растворах форма В обычно является незаряженной органической молекулой, которая способна к образованию межмолекулярной водородной связи, но настоящая обработка результатов в равной мере применима, например, к образованию ионных мицелл или к димеризации свободных радикалов. При других условиях центральная группа может сама по себе диссоциировать. Например, в органических растворителях карбоновые кислоты можно рассматривать как недиссоциированную группу В, но в водном растворе они заметно диссоциируют как протонный комплекс HjA. Более сложные полиядерные формы В,Ар(р>0), которые содержат как центральную группу, так и лиганд, рассматриваются в гл. 17. Смешанные комплексы ВдАрЗ ,, которые являются полиядерными по отношению к В и содержат два типа лигандов, обсуждаются в гл. 18. [c.391]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]


    Упрочнение квазиароматического цикла с водородной связью при возбуждении молекулы может наблюдаться при определенных условиях — при наличии копланарности и достаточной величине энергии л-электронного взаимодействия. В связи с этим нами были изучены спектры люминесценции 1,4-нафтохинона и его а-окси-производных. Если 1,4-нафтохинон в растворах гексана при 77° К дает спектр люминесценции с выраженной колебательной структурой, характеризующейся частотами валентных колебаний групп СО, то а-окси-1,4-нафтохинон проявляет слабую и затухающую люминесценцию (рис. 11). Этот факт можно объяснить разрывом водородной связи в пятичленном цикле при возбуждении молекулы вследствие нарушения донорно-акцепторного взаимодействия и невозможности образования устойчивого квазиароматического цикла с л-электронным взаимодействием. В некоторых случаях межмолекулярные связи в системах с л-электронами также могут сильно влиять на выход люминесценции и даже вызвать ее почти полное тушение. Действительно, наши результаты [311] показывают, что 1,4-антрахинон-дикарбоновая кислота имеет ярко-зеле-ную, но быстро и обратимо затухающую люминесценцию, в то же время спектр люминесценции порошка Р-антрахинон-карбоновой кислоты представляет структуру четырех интенсивных полос, сдвинутых в длинноволновую сторону, и не подвергается концентрационному тушению. Измерениями ИК-спектров установлено, что межмолекулярные водородные связи в Р-антрахинон-карбоно-вой кислоте осуществляются посредством карбоксильных групп (димеризация), а ассоциация молекул 1,4-антрахинон-дикарбоно-вой кислоты происходит с участием карбонильной (хромофорной) группы антрахинона и ОН карбоксильной группы. В диоксановом растворе ассоциация разрушается и раствор 1,4-антрахинон-дикар-боновой кислоты приобретает стабильную зеленую люминесценцию. [c.218]

    Что же понимают под водородной связью [154, 155] Из определений молекулярных весов, измерений коэффициентов распределения между различными растворителями, а также инфракрасных спектров известно, что, например, вода, спирты, енолы, фенилы, амиды могут ассоциировать, а кар новы кислоты — димеризоваться. Так как простые эфиры спиртов, енолов и фенолов, сложные эфиры карбоновых кислот, N-метилированные амиды кислот — в общем все соединения, у которых соответствующий атом водорода замещен алкильным остатком, не обнаруживают подобной ассоциации, то она должна быть связана с наличием Н-атомов в соответствующих- соединениях. Латимер и Родебуш [156] (см. также обзоры [157—163] исследования межмолекулярной связи, обусловленной межмолеку-лярной мезомерией, см. [164]) первыми указали на общее значение этого эффекта и предположили, что ядро водорода может удержать не только один, но и два электрона двух различных атомов. [c.346]


Смотреть страницы где упоминается термин Карбоновые кислоты межмолекулярные ассоциации: [c.25]   
Органическая химия (1964) -- [ c.75 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация кислот

Межмолекулярные



© 2024 chem21.info Реклама на сайте