Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты и катализаторы адсорбционные свойства

    Уравнения Гиббса, Генри, Ленгмюра и Шишковского по экспериментальным данным о поверхностном натяжении растворов позволяют рассчитать следующие величины и характеристики адсорбцию ПАВ на межфазной границе раствор — воздух и раствор — твердый адсорбент толщину адсорбционного слоя линейные размеры молекул ПАВ предельную адсорбцию поверхностного мономолекулярного слоя удельную поверхность твердого адсорбента, катализатора, а также исследовать свойства поверхностных пленок. [c.39]


    В литературе существует обширный экспериментальный материал, свидетельствующий о наличии в ряде случаев поверхностей твердых тел с широким набором различных по адсорбционным свойствам мест. Это приводит к тому, что молекулы, поглощенные адсорбентом или катализатором, удерживаются на них с различной прочностью. Причины возникновения неоднородности подробно рассмотрены в монографии, специально посвященной анализу процессов, протекающих на таких неоднородных поверхностях [80]. В настоящей книге рассматриваются различные хроматографические методы изучения поверхности катализаторов, которые во многих случаях неоднородны как в адсорбционном, так и в каталитическом отношении. Интересно проанализировать влияние неоднородности поверхности на протекание на них хроматографических процессов. [c.147]

    Ряд признаков указывает на то, что разные участки поверхности твердого адсорбента неоднородны по своим адсорбционным свойствам. Так, установлено, что предел адсорбции достигается ранее, чем это соответствует покрытию поверхности твердого адсорбента молекулами адсорбтива даже в один ряд. Это говорит о том, что на поверхности адсорбента имеются места, не участвующие в процессе адсорбции. Молекулы адсорбтива поглощаются лишь по отдельным точкам поверхности адсорбента. Эти точки носят название активных центров катализатора. [c.141]

    Диоксид марганца обладает окислительными, каталитическими и адсорбционными свойствами. Благодаря своим свойствам он находит широкое применение во многих отраслях промышленности. Диоксид марганца используется в качестве деполяризатора в сухих гальванических элементах. Он применяется как окислитель, адсорбент, катализатор в химической, пищевой, металлургической промышленности его используют при получении марганца, сиккативов, как компонент коричневого пигмента для красок, в аналитической химии. [c.188]

    На основе анализа зависимостей кислотно-основных, адсорбционных, электронных свойств от состава и корреляций между ними определены пути к созданию новых материалов - адсорбентов, катализаторов, активных элементов сенсоров-датчиков. [c.133]

    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]


    В качестве адсорбентов широко используются твердые тела, для которых удельная поверхность является наиболее важным параметром, характеризующим их адсорбционные свойства при низких и средних относительных давлениях. Такие характеристики, как распределение пор по размерам и суммарный объем пор, проявляются при относительных давлениях выше 0,3—0,4. Множество контактных катализаторов принадлежит к твердым телам с большой удельной поверхностью их эффективность определяется площадью 5, которая фактически доступна реагирующим молекулам в условиях, осуществляемых при проведении процесса в лабораторном или промышленном масштабе. Величина 8 связана с удельной поверхностью, но фактически доступная часть удельной поверхности зависит от быстроты перемещения молекул с краев зерен к внутренним частям поверхности и следовательно, зависит от распределения пор по размерам. [c.33]

    Применение современных физических и физико-химических методов существенно расширило наше представление о природе ионного обмена и поверхностных явлений на дисперсных минералах, наметились пути регулирования их гидрофильности и адсорбционных свойств, что имеет большое значение для создания на основе дисперсных минералов новых адсорбентов, катализаторов, наполнителей строительных материалов и буровых растворов. [c.77]

    Из этого далеко не полного перечня областей применения адсорбции очевидно, что для успешного осуществления указанных процессов адсорбент должен обладать комплексом свойств развитой удельной поверхностью, иметь соответствующую структуру, сорбционную емкость и обладать определенной химической природой поверхности. Например, для очистки масел, примеси которых обладают большим размером молекул, наиболее эффективны крупнопористые адсорбенты, в то время как в случае глубокой осушки газов лучший эффект достигается на мелкопористых адсорбентах и т. д. Иначе говоря, каждый адсорбционный или каталитический процесс в зависимости от факторов, лимитирующих протекание той или иной его стадии, требует адсорбент (катализатор) строго заданной природы и структуры. Поэтому детальное определение параметров структуры пористых тел— залог эффективного их использования при решении конкретной адсорбционной задачи. [c.33]

    Для изучения адсорбционных, каталитических и электролитических свойств металлов и их сплавов успешно применяются электрохимические методы, даюш ие возможность сопоставить электродные процессы, локализованные на границе электрод — раствор, с адсорбционными и каталитическими (тот же электрод — адсорбент — катализатор). В ряде случаев каталитическая активность электролитически смешанных осадков много выше активности их отдельных компонентов. В литературе имеются сведения о значительной каталитической активности электролитически смешанных осадков платины и рутения с небольшим процентным содержанием рутения в различных каталитических и электрохимических процессах [1—5]. [c.234]

    Адсорбционные свойства аморфных синтетических алюмосиликатных катализаторов и адсорбентов позволяют рассматривать их в качестве селективных по нафтеновым кислотам адсорбентов с соответствующими областями их использования.  [c.40]

    Гидроокиси и окиси алюминия и других металлов, применяемые в современной промышленности в качестве катализаторов (крекинга) и адсорбентов (при очистке растворов), привлекают к себе большое внимание исследователей. Проблеме рационального использования гидроокисей и влиянию на их адсорбционные свойства физико-химических и механических факторов посвящено значительное число работ. [c.198]

    Удельная поверхность и структура (размер и характер пор) являются важными характеристиками, определяющимн адсорбционные свойства адсорбента. Адсорбция зависит от величины поверхности чем больше пористость твердого тела, тем больше его общая удельная поверхность и способность к адсорбции. Для силикагелей, алюмогелей и алюмосиликатных катализаторов величина удельной поверхности может быть в пределах от 10 до 1000 м г. [c.24]

    Специальной обработкой можно изменить адсорбционные свойства адсорбента в нужном для данного случая направлении. Например, обработка горячим паром силикагеля, алюмосиликатных катализаторов и т. д. приводит к разрушению пор. Это явление мы наблюдали при попытке снять трансформаторное масло с поверхности гранул отработанных цеолитов водяным паром. При этом адсорбционная емкость яо бензолу резко возросла, что указывает на разрушение кристаллической структуры. [c.63]

    В работе использовались адсорбционные, электрофизические, спектральные методы, а также кинетический метод проведения реакции в адсорбированном слое. В качестве адсорбентов-катализаторов были использованы окислы молибдена, германия, кремния, алюминия, иттрия, гольмия, тербия и лантана. Такие объекты были использованы с надеждой, что электронные свойства этих типичных катализаторов и адсорбентов будут согласовываться с известными представлениями электронной теории на полупроводниках и с имеющимися в литературе сведениями о роли положения уровня Ферми. [c.241]


    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    На основании имеющихся опытных данных по составу и свойствам асфальтенов можно с достаточной уверенностью прогнозировать эффективное применение асфальтенов в производстве высокопористого адсорбционного материала (активированного угля) с однородными порами для использования в качестве новых типов адсорбентов типа молекулярных сит, как носителей для катализаторов гидрирования и дегидрирования, в качестве адсорбентов в процессах очистки от загрязнений воды и атмосферного воздуха. Об одном из приемов приготовления активных адсорбентов из асфальтенов упоминалось выше. Приготовление активных ионообменных материалов, матрицей в которых служат смолисто-асфальтеновые вещества нефти,— весьма перспективное направление исследований [23, 24]. [c.262]

    Благодаря свойствам извлекать из сложных органических смесей в определенной последовательности органические соединения различных классов адсорбенты нашли широкое применение в промышленности. В нефтеперерабатываюш ей промышленности они до последнего времени применялись главным образом для доочистки масел после их предварительной сернокислотной или селективной очпстки. Улучшение качества смазочных масел достигается за счет все возрастающ,его применения таких адсорбентов, как отбелпва-юш,ие глины (гумбрин, ханларский бентонит), крошки синтетического шарикового алюмосиликатного катализатора (отходы основного производства) и широкопористых силикагелей. Алюмосиликатные адсорбенты-катализаторы АД и СД могут быть использованы в процессах адсорбционной очистки масел и топлив, при определении группового углеводородного состава остаточных топлив (вместо силикагеля АСК) и прн каталитическом крекинге легких керосино-газойлевых фракций п тяжелых вакуумных дистиллятов. [c.128]

    Г. Зульфугарова [4] и ряда других авторов показано, что каталитические и адсорбционные свойства ряда природных и синтетических катализаторов зависят от химического состава, адсорбционно-структурных Свойств- и ряда других факторов. В случае природных адсорбентов эта связь я вляется довольно сложной, так как последние относятся к IV структурному т пу и, как правило, являются полиминеральными породами. Для изучения структуры волжских опок нами были использованы электронно-микроскопический и адсорбционно-структурный Методы. В лаборатории адсорбции Московского университета одним из нас были сняты изотермы адсорбции паров азота, метанола, бензола, толуола, циклогексана, н-гексана и н-ггптана на ряде волжских опок, алюмосиликатно м катализаторе и силикагеле КСК-4. Некоторые данные по величинам удельных поверхностей скелета и адсорбционной пленки, зффе.ктивным диаметром и химическому составу изученных катализаторов приведены в табл. 1. [c.25]

    Аморфные алюмосиликаты. Нами исследованы адсорбционные свойства синтетических алюмосиликатных катализаторов и адсорбентов. В основном это рентгеноаморфиые вещества с преобладающим раднхсом нор 20—40 А. [c.39]

    Как было показано выше, подходящими адсорбентами для перколяционной очистки дизельных нафтеновых кислот от смолистых примесей оказались синтетические алюмосиликатные катализаторы крекинга, крупнопористые силикагели и пористые стекла. Наибольший эффект при контактной очистке дизельных и гудронных (т. е. кубовых остатков) нафтеновых кислот получен с применением тонкодисперсного таганского (КазССР) розового бентонита кислотной активации. Адсорбционные свойства таганского бентонита по основным нефтяным компонентам исследовались в Институте химии АН Уз ССР и описаны в [86]. [c.106]

    В монографии обобщены результаты исследований в области синтеза, изучения свойств модифицированных форм цеолитов и цеолитсодержащих адсорбентов (катализаторов). Приведены данные исследования адсорбции молекул различных веществ на катион-, изоморфнозамещенных цеолитах и цеолитсодержащих материа/ ах. Рассмотрено влияние природы активных центров адсорбционных полосте на спектральные, адсорбционные и каталитические свойства алюмосили-катных пористых кристаллов. Особое внимание уделено роли компенсирующих катионов в процессах адсорбции, катализа и изменения избирательных свойств молекулярных сит. Приведены краткие сведения о возможных областях применения цеолитов в технике и лабораторной практике. [c.2]

    Фирма Norton Со (США) выпускает в качестве адсорбента zeolon 200 (модифицированный морденит) в виде таблеток размером 3,2 X X 1,6 мм с кислотостойким связующим. Zeolon 900, применяемый как катализатор, формуют в прочные таблетки того же размера (но без связующего) или в микросферы размером 0,29 х 0,83 мм [71, 72]. Для формования морденита в Н -, (РЗЭ) +- и Са +-формах используют алюмокремниевый гель, взятый в количестве 80—90% [114]. В особых случаях применяют способ прессования под давлением. Однако необходимо учитывать, что обработка цеолита под давлением до 280 кгс/см (исходные частицы размером 10—0,01 мкм) уменьшает пористость в два раза, снижая при этом его адсорбционные свойства [115], а давление 15 ООО кгс/см может даже разрушить структуру цеолита NaX [116]. [c.39]

    Хотя метод оказался удобным в некоторых случаях, в том числе для изучения адсорбционных свойств катализаторов при высоких температурах, указанные выше ограничения Ьильно снижают его ценность при измерении удельной поверхности твердых тел. Такие измерения требуют достаточно универсального и быстрого метода, малочувствительного к свойствам адсорбента и условиям опыта, поскольку очень часто заранее неизвестны даже приблизительно свойства изучаемого твердого тела. Постановка же дополнительных опытов с целью выяснения применимости метода к конкретной системе может настолько затянуть определения, что теряется всякий смысл в его использовании. По этим причинам определение удельной поверхности по растянутой границе хроматограммы практически мало перспективно. Исключение могут составить особые случаи, когда метод может быть использован, например, при необходимости определения поверхности катализатора при высоких температурах по адсорбции одного из компонентов газовой смеси. [c.191]

    Адсорбционные свойства природных цеолитов могут использоваться для осушки, очистки и обессеривания сырья и отдельных продуктов нефти, для получения водорода, аммиака, ненасыщенных и ароматических углеводородов, удаления сернистого газа из промышленных выбросов в газовой, химической и нефтехимической отраслях, при получении кислорода, азота и аргона из воздуха. Наибольшее практическое значение приобретают природные цеолиты как адсорбенты для осушки газов и неводных жидкостей, извлечения сернистого газа из отходящих газов в цветной металлургии и производства серной кислоты, а также для извлечения кислорода из воздуха. Модифицированные природные цеолиты могут служить катализаторами при крекинге нефти, антислеживателями при транспортировке солей и т.д. [c.6]

    Обычно каталитические эксперименты проводят на лабораторных микрокаталитических установках при стационарном и нестационарном протекании процессов диффузии и адсорбции реактантов при этом одним из наиболее перспективных способов исследования физических свойств катализаторов и адсорбентов является экспрессный импульсный хроматографический метод, позволяющий в ограниченные промежутки времени для значений технологических параметров, близких к промышленным, получить (в частности, для MOHO- и бидисперсных моделей зерен катализаторов) важную информацию о численных величинах их констант, таких, как эффективные коэффициенты диффузии в макро- и микропорах, константы скорости адсорбции, константы адсорбционно-десорбционного равновесия, коэффициенты массоотдачи. Для оценки последних применяются метод моментов, метод взвешенных моментов, методы, использующие в своей основе преобразования Лапласа и Фурье и т. д. Однако все они обладают существенными недостатками применимы только для линейно параметризованных моделей, не позволяют провести оценку точности полученных параметров и оценку точности прогноза по моделям, не допускают проведение планирования прецизионного и дискриминирующего эксперимента. Отметим также, что при их практическом исполь- [c.162]

    При интенсификации процесса депарафинизации при помощи присадок встает вопрос об их распределении между твердой и жидкой фазами. Это важно с практической точки зрения, так как депарафинированное масло и твердые углеводороды подвергаются дальнейшей адсорбционной или гидроочистке и присадка может существенно влиять не только на эксплуатационные свойства товарных продуктов, но и на активность используемого адсорбента или катализатора. Критерием наличия присадок в продуктах депарафинизации предложено [106] считать удельное объемное сопротивление (рв-Ю , Ом-см) и поверхностное натяжение (СТ750С, дин/см) этих продуктов как легко измеряемых и достаточно точных параметров. [c.173]

    Наиболее эффективны и перспективны процессы второй и третьей групп, обеспечивающие глубокую очистку и выделение групп углеводородов с высокой степенью чистоты. При контактной очистке применяют естественные глины. При очистке фильтрованием в качестве адсорбента исполкзуют крошку алюмосили-катного синтетического катализатора, алюмогели и окись алк>ми-ния, содержащие не менее 80% частиц с зернами размером 0,25— 0,5 мм. Адсорбционная способность (по толуолу) должна быть для свежего адсо.рбента 1000—1100, для регенерированного — 900—950. Свойства алюмосиликатных синтетических адсорбентов приведены ниже  [c.241]

    Наличие кристаллической структуры, химическая и термическая стабильность, наличие в цеолитах пор обусловили их применение. Поэтому в промышленности определены основные области применения природных цеолитов в качестве адсорбентов, молекулярных сит, катализаторов, основанные на адсорбционных, ионообменных и молекулярно-ситовых свойствах. В качестве молекулярного сита впервые в 1945 г. Баррером было показано использование дегидратироваппого природного шабазита. В процессах разделения и очистки природные цеолиты впервые начали применять в конце 1954 г. В качестве катализаторов в конце 50-х гг. началось широкое промышленное применение природных цеолитов. [c.5]

    Исследования структуры, адсорбционных, ионообменных и других свойств цеолитов часто проводились на природных образцах. Так, все первые экспериментальные работы по ионному обмену н селективной адсорбции различных газов (см. гл. 1) были выполнены на природных минералах. Эти работы значительно расширили наши знания о цеолитах. Основные сведения о природных цеолитах — их классификация, распространеппость, условия образования и свойства — очень важны для понимания процесса синтеза и свойств синтетических цеолитов. Следует отметить, что, хотя некоторые разновидности цеолитов образуют значительные месторождения, природные образцы пока еще не наш.яп широкого применения в качестве катализаторов и адсорбентов, тогда как ряд их синтетических аналогов успешно используется на практике. [c.195]

    Согласно этой теории молекулы газообразного вещества удерживаются на поверхности катализатора, образуя облекающий ее одномолекулярный (по толщине) слой. Образование этого слоя адсорбированных молекул происходит при участии сил валентности катализатора (главных и побочных), таким образом известное сродство между молекулами газа и катализатора должно иметь место. Такая адсорбция, связанная с перестройкой электронных орбит в атомах, связана и с изменением химических свойств газовых молекул. Весьма вероятно, что в зависимости от своего химического состава, соотв. полярности отдельных атомов или радикалов, молекулы определенным образом ориентированы к поверхности катализатора. Реакция, протекающая на поверхности катализатора, может итти различными путями 1) между молекулами или атомами, адсорбированными на соседних участках поверхности 2) между молек глами адсорбционного слоя и атомами находящегося под ним твердого адсорбента и наконец 3) при столкновении молекул газа, находящегося в данном объеме, с уже адсорбированными молекулами или атомами (Л а н г м ю р). [c.482]

    Корпускулярная теория не только объяснила структуру адсорбентов и катализаторов, но и указала путь управления структурой. Оказалось, что изменение адсорбционных и каталитических свойств этих материалов связано со старением золей и гелей во влажных условиях по переконденсационному механизму. [c.10]

    Объектами дальнейшего рассмотрения в настояш ем докладе служат дисперсные и пористые твердые тела, большую часть которых составляют адсорбенты и катализаторы. В дальнейшем изложении будут анализироваться конкретные пути получения информации об их свойствах на основании адсорбционных и капиллярных явлений. Поэтому во избеншние многочисленных повторений все эти тела будут условно называться адсорбентами. [c.254]


Библиография для Адсорбенты и катализаторы адсорбционные свойства: [c.230]   
Смотреть страницы где упоминается термин Адсорбенты и катализаторы адсорбционные свойства: [c.72]    [c.125]    [c.53]    [c.52]    [c.421]    [c.667]    [c.76]    [c.67]    [c.242]    [c.167]    [c.313]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты адсорбционная

Адсорбционные свойства

Катализаторы адсорбционные

Свойства катализаторов и адсорбентов



© 2025 chem21.info Реклама на сайте