Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные кристаллы, структур

    Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения, связывающие воедино ранее разобщенные неорганическую химию и органическую химию. Многие комплексные соединения — витамин В12, гемоглобин, хлорофилл и другие — играют большую роль в физиологических и биохимических процессах. Исследование свойств и пространственного строения комплексных соединений оказалось чрезвычайно плодотворным для кристаллохимии, изучающей зависимость физико-химических свойств веществ от структуры образуемых ими кристаллов, и породило новые представления о природе химической связи. К ценным результатам привело применение комплексных соединений и в аналитической химии. [c.354]


    Метод рентгеноструктурного анализа имеет свои особенности и ограничения, он трудоемок, требует получения монокристаллов, часто не позволяет с высокой точностью определить длины связен и валентные углы, расчет структуры кристаллов даже с применением ЭВМ длителен. Все это не умаляет очевидных достоинств метода, области его применения обширны. Знание структуры и энергетики соединений, как простых по составу, так и сложных (комплексные, полимерные), позволяет установить характер и прочность химических связей, уточнить формулу, найти плотность и выявить новые химические соединения в системах взаимодействующих веществ. [c.122]

    Методом ЭПР исследуются молекулы, атомы и радикалы в газовой фазе, матрицах, растворах (в том числе и сольватированные электроны), в кристаллах и порошках. Из спектра ЭПР и особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигурации атомов и ионов, о свойствах атомных ядер. ЭПР — один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. При этом величина -фактора и его зависимость от направления определяются силой и симметрией [c.148]

    Обычно, однако, в качестве весовой функции берутся не структурные факторы, а структурные амплитуды Р. В четвертой части (второй том) подробно рассматривается физическое содержание этого понятия. Здесь достаточно сказать, что структурная амплитуда является комплексной величиной, зависящей как от амплитуды, так и от фазы соответствующего дифракционного луча. Обратная решетка с такой весовой функцией удобна для математических преобразований при изложении различных теоретических аспектов структурного анализа. В частности, при помощи обратной решетки может быть изложена теория разложения электронной плотности в ряды Фурье. Однако для конкретного кристалла, структура которого еще не исследована, обратная решетка в таком виде не может быть построена, так как для определения начальных фаз отраженных лучей требуется дальнейшая обработка экспериментальных данных. [c.315]

    Островные кристаллические структуры содержат островки — группы из ограниченного числа частиц. Внутри островка химические связи прочнее и короче, чем между островками . Островные структуры имеют силикаты. К этому типу структур относят также кристаллы, в узлах кристаллической решетки которых находятся молекулы, сложные и комплексные ионы. Например, в кристаллах K4[Fe( N)6] роль островков> играют ионы [Ре(СМ)б] . К островной можно причислить структуру кристаллического иода. [c.163]


    Силикаты ЯВЛЯЮТСЯ примерами соединений, образующих по преимуществу комплексные кристаллы [б]. Действительно, среди силикатов в той или иной форме практически существуют все градации сложных структур.Однако все известные кристаллы характеризуются тем, что кремний окружен четырьмя атомами кислорода в форме почти правильного тетраэдра , в котором расстояние кремний— кислород равно приблизительно 1, бА, несколько меняясь от кристалла к кристаллу. В ортосиликатах, в которых отношение кислорода к кремнию составляет по меньшей мере 4 1, образуются простые анионы 8104 . В кристаллах, в которых содержится [c.307]

    Преобладание процесса возникновения новых зародышей над скоростью роста уже имеющихся кристаллов особенно характерно для комплексных электролитов, а также для растворов простых солей, содержащих ПАВ. В последнем случае из-за адсорбции чужеродных частиц на растущих гранях линейная скорость роста кристаллов уменьшается и осадки получаются высокодисперсными. Весьма часто при этом они не имеют даже четко выраженной кристаллической структуры. При обратном соотношении скоростей, когда линейная скорость роста кристаллов начинает преобладать, осадок имеет грубую кристаллическую структуру. В общем случае образованию мелкокристаллических осадков способствует повышение плотности тока на катоде, понижение температуры электролита, добавки нейтральных солей (снижающих концентрацию ионов осаждаемого металла у катода), разбавление раствора, введение в электролит ПАВ, комплексообразование. [c.389]

    Следует рассмотреть, является ли образование комплексных продуктов присоединения действительно процессом кристаллизации. По определению кристалл представляет собой образуемое элементом или химическим соединением твердое тело, форма которого ограничена симметрично расположенными плоскостями, внешне отражающими определенное внутреннее строение. Хотя в начальных стадиях исследования продуктов присоединения, образуемых мочевиной, высказывались предположения о близости образования аддуктов к адсорбционным процессам, последующие рентгеноструктурные исследования показали [72], что в присутствии связываемого в виде комплекса соединения кристаллическая структура мочевины изменяется из обычной тетрагональной в гексагональную, с образованием внутренних каналов, в которых заключены молекулы связываемого соединения. Следовательно, можно считать, что [иглы кристаллов комплексов внешне отражают определенное внутреннее строение. Это дает основание считать правильным термин аддуктивная кристаллизация . [c.52]

    Эффективно и без больших затрат воду можно очистить от загрязняющих ионов, применив весьма интересный процесс, основанный на использовании гигантских молекул — молекулярных структур, настолько крупных, что они образуют видимые частицы. Примером таких гигантских молекул может служить кристалл алмаза (гл. 7). Некоторые комплексные неорганические кристаллы, например минералы, называемые цеолитами, имеют такой же характер. Их применяют для умягчения жесткой воды — для удаления из нее ионов тяжелых металлов. Такой способ называется ионообменным методом. [c.242]

    Образование комплексных соединений нормальных парафинов с карбамидом является следствием молекулярно-ситовых свойств последнего [103]. Молекулы карбамида образуют кристаллическую структуру, располагаясь в кристалле по продольным ребрам правильной шестигранной призмы. Расстояние между ребрами 4,8 А. Смежные молекулы ориентированы на 120° друг относительно друга. На ребрах фиксированы центры кислородных атомов. Атомы кислорода прочно связаны с аминогруппами соседних молекул водородными связями. Крепление приводит к образованию из молекул карбамида спиралевидной структуры. [c.468]

    Наиболее простыми кристаллическими решетками ионного типа являются решетки ЫаС1 и СзС1, рассмотренные нами ранее (см. рис. 6-2). Однако в кристаллах веществ, содержащих комплексные ионы, структура элементарных ячеек может быть очень сложной. [c.107]

    Существует, однако, другой путь рассмотрения структур комплексных ионных кристаллов. В любом простом кристалле, как Na ) или aF. , каждый ион окружен некоторым числом ионов другого вида. Число отрицательных ионов вокруг положительного иона определяется отношением радиусов двух ионов координационное число отрицательного иона по отношению к положительным ионам фиксируется условием электронейтральности кристалла. Следовательно, можно рассматривать кристалл, как построенный из групп АХ , связанных друг с другом общими углами, ребрами или гранями. Применительно к такому простому кристаллу, как Na l, эта концепция не имеет практической ценности, но она очень помогает в случае комплексных кристаллов, содержапщх несколько различных видов положительных ионов с различными координационными числами. [c.126]


    Весьма интересно то обстоятельство, что в кислородсодержащих сложных кристаллах и в кристаллах, содержащих кислородные анионы, более электроотрицательный элемент проявляет тенденцию к сохранению постоянного координационного числа, будучи окруженным определенным числом атомов кислорода, а электроположительные элементы имеют координационные числа, меняющиеся от кристалла к кристаллу, причем кислородные атомы часто расположены по отношению к ним довольно беспорядочно. Таким образом определяют структуру более электроотрицательные элементы, а более электроположительные пользуются тем, чем могут . Причина этого становится ясной, если представить себе, что кристалл состоит из ионов, образованных всеми элементами, входящими в его состав. Возьмем, например, кристалл ВРО4 и будем считать, что он состоит из ионов В+ ++, Р + и О ". Сила, с которой ион Р + действует на ионы О—, больше, чем сила действия иона В+ ++, как вследствие большего заряда, так и большей электроотрицательности фосфора. То обстоятельство, что Р + сильно заряжен и что фосфор сильно электроотрицателен, означает, что Р—О связь определенно не является чисто ионной, но основной вывод от этого не изменяется, так как такая характеристика связи является результатом большей силы, с которой фосфор действует на кислород. Именно этот кристалл может быть приведен в качестве примера того, что наиболее сильно заряженный ион, в данном случае Р +, определяет структуру кристалла, так как атомы фосфора окружены четырьмя кислородами, образующими почти правильный тетраэдр, тогда как атомы бора также окружены четырьмя кислородами, но образующими тетраэдр уже менее правильной формы. Нормальное положение бора, как следует из структуры борат-иона,—в центре между тремя кислородами. Такое преобладание влияния высокозарядных ионов является одним из правил, определяющих структуру комплексных кристаллов. [c.311]

    Как видно, из спектра ЭПР л особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигураций атомов и ионов, о свойствах атомных ядер. Для химиков ЭПР ценен как один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и. геометрии. Найда из спектра ЭПР газов, растворов, кристаллов (порошков) значение Н, отвечающее резонансной линии, по (19.15) вычисляют -фактор. Последний используют для идентификации радикалов, чему Ьпособствует вьгявление сверхтонкой структуры спектра. По я-фактору можно судить о симметрии радикала, а также определить энергии отдельных орбиталей. Сверхтонкое расщепление в спектре позволяет определить заселенность. у- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронйое распределение и в известных случаях — валентный угол. Так, например, именно метод ЭПР сказал решающее слово в пользу угловой структуры радикала СН2. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. Величина -фак-тора и его зависимость от направления при этом определяются силой И симметрией ло.ия, создаваемого лигандами [к-6]. [c.78]

    Мицеллярное строение наиболее распространенных известковоглинистых шламов можно представить следующим образом. В пространственной структуре существуют центры (узлы)—комплексные образования с ядром из карбоната кальция размером 5— 20 мкм. На поверхности этих частиц, заряженных обычно отрицательно, адсорбируются из водного солевого раствора молекулы воды и катионов металлов. Наряду с ними поверхностью частиц могут притягиваться положительно заряженные мелкие частицы гидроксидов железа, алюминия и других веществ. Этот слой является первичным слоем противоионов на ядре (рис. 8.1). Вокруг такой частицы располагаются более мелкие кристаллы глинистых компонентов (размером менее 0,5 мкм), представляющие собой, в свою очередь, сложные образования. Благодаря сильно развитой поверхности частицы глины обладают большим запасом поверхностной энергии. Ненасыщенные связи поверхностных узлов решетки способны прочно удерживать комплексы силикагеля, гиббсита, гидроксида железа. [c.274]

    При гидратации минералов клинкера образуются различные по составу и структуре кристаллы гидросиликатов, гидроалюминатов и гидроалюмоферритов кальция, их твердых растворов, комплексных соединений, при этом часть из них выделяется в скрытокри-сталлнческом (гелевидном) состоянии. Большое разнообразие кристаллогидратов в цементном камне сильно усложняет его изучение. [c.305]

    VI-1-10. Комплексное соединение перхлората серебра и бензола АдС104-СбНб (молекулярный вес 285) имеет ромбическую структуру с размерами элементарной ячейки ао = 7,96, oa = 8,34 и Со=П,7А. На каждую элементарную ячейку приходится четыре молекулы [30]. Определите плотность кристаллов. [c.56]

    С развитием теоретических основ кристаллоэнергети-ки неизбежно должно усилиться значение РСА в термодинамике твердою тела, ибо для расчета одного из важнейших термодинамических параметров — потенциальной энергии кристалла при абсолютном нуле — требуется знание структуры кристалла. В настоящее время такие расчеты, в определенном приближении, проводятся главным образом для чисто ионных и чисто вандерваальсовых взаимодействий. Но с развитием квантовой химии становится реальной возможность относительно быстрой (и не слишком уж грубой) оценки зарядов на атомах сложных гетероатомных молекул. Тогда упаковочный (кристаллоструктурный) аспект строения кристаллов сложных соединений (элементорганических, комплексных и др.), находящийся вне поля зрения исследователя, окажется весьма актуальным. [c.135]

    Барит, или тяжелый шпат, представляет собой безводный сульфат бария, кристаллизующийся в той же ромбической сингонии, что и сульфат кальция (ангидрит), но отличающийся от него структурой и размером кристаллов. Как и железистые утяжелители, барпт обладает кристаллической решеткой с прочной ионной связью и максимально плотной упаковкой (координационное число — i2). Устойчивость решетки, образованной крупным комплексным анионом [804] , обеспечивается лишь при сочетании его с крупным двухвалентным катионом. Наибольший атомный радиус у бария (2,24 А). У других катионов — стронция и свинца, образующих безводные сульфаты (целестин и англезит), — размеры атомов меньше (2,15 и 1,741). [c.46]

    Катион О входит в состав известного к тому времени комплексного соединения 02+ГР1Рб1. На основании этой аналогии путем взаимодействия Р1РоС ксеноном Бартлетту удалось получить красные кристаллы Хе [Р1Рв1. Это открытие и положило начало химии благородных газов. Вскоре были получены Хе [КиРв], Хе [НИР ] и Хе [РиР ]. Изучение структуры этих соединений показало, что хотя связь между внутренней и внешней сферами комплекса является преимущественно ковалентной, ксенон поляризован положительно, что можно трактовать как результат окисления ксенона элементом-комплексообразователем в степени окисления -Ь6  [c.392]

    Расшифровка СТС спектров ЭПР очень важна для органической химии при исследовании свободных радикалов. По СТС спектров ЭПР определяют область делокализации неспаренного электрона в свободном радикале. Кроме того, можно найти плотность неспа-репного электрона на соответствующих атомах, что дает возмож-ность судить о реакционной способности отдельных фрагментов радикала. В неорганической химии изучение СТС спектров ЭПР дает ценную информацию при установлении структуры комплексных соединений. Метод ЭПР используют также и при исследовании дефектов в кристаллах, в том числе дефектов, возникающих после облучения нейтронами. ЭПР приобрел особый интерес и для квантовой электроники в связи с тем, что открылась возможность использова- [c.191]

    Для хрома характерны соединения со степенью окисления +3. Их получают непосредственным взаимодействием хрома с галогенами или в других химических процессах. Так, соль СгС1з — кристаллы красно-фиолетового цвета — чаще всего находится в полимерном состоянии. Ион Сг + склонен к образованию многочисленных комплексных солей, в которых лигандами являются НзО С1 ЫНз. Склонность к образованию комплексов с координационным числом 6 объясняется структурой иона  [c.345]

    Координационное число 4, характерное для элементов второго периода системы Д. И. Менделеева, обусловливает образование устойчивых комплексных соединений с тетраэдрической конфигурацией ионов и совпадает со структурой полностью гибридизированного атома углерода в молекуле метана Ыа2(Вер4] —фторобериллат натрия Ь1а1Вр41 — фтороборат натрия СН4 — метан ЫН4р — фторид аммония. Устойчивость этого координационного числа проявляется также в строении кристаллов. [c.92]


Смотреть страницы где упоминается термин Комплексные кристаллы, структур: [c.157]    [c.95]    [c.586]    [c.582]    [c.623]    [c.368]    [c.554]    [c.638]    [c.80]    [c.90]    [c.2]    [c.110]    [c.281]    [c.637]    [c.473]    [c.487]    [c.420]    [c.709]    [c.24]    [c.166]    [c.404]    [c.159]    [c.182]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.306 , c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные кристаллы, структур правила, определяющие

Кристалл структура

Структура комплексных

Структуры комплексных ионных кристаллов



© 2025 chem21.info Реклама на сайте