Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография фракционированная

    Модификация поверхности адсорбента ионами металла, обладающего высокими комплексообразующими свойствами, позволяет удерживать ГАС в слое благодаря образованию лабильных связей в координационной сфере иона-комплексообразователя, т. е. реализовать координационный или лигандно-обменный механизм сорбции. В качестве таких связанных с поверхностью носителя акцепторов чаще других используются ионы Ag+, Hg++, u++, Ni++, Fe + [17, 118—120], с помощью которых удается селективно извлекать из нефти и нефтяных концентратов и фракционировать многие классы ГАС. Особым достоинством координационной хроматографии является возможность эффективного разделения соединений, близких по физико-химическим свойствам, в том числе геометрических и да- [c.16]


    Легкие крекинг-газойли, полученные различными методами из калифорнийской нефти, фракционировали методами перегонки и вытеснительной хроматографии [51]. Полученные данные, приведенные в табл. 2, показывают, что состав крекинг- и прямогонных газойлей сильно различается. [c.122]

    Подготовка ионообменников к работе. Использованию ионитов для хроматографического разделения белков предшествует их предвари- тельная обработка. Иониты промышленного изготовления после набухания, во-первых, фракционируют по размеру частиц (однородность частиц сорбентов по размеру — одно из важных условий успешной хроматографии) и, во-вторых, подвергают циклизации — переводу их из одной формы в другую. Катиониты переводят из Ма+-формы в Н -фор-му или наоборот, а аниониты — из С1 -формы в ОН -форму или наоборот. В процессе такой обработки стабилизируется структура ионита и функциональные группы становятся более доступными. Одновременно ионит освобождается от примесей. [c.109]

    Эти методы хроматографии, появившиеся около двух десятилетий назад, очень широко применяются во всех лабораториях, изучающих белки. Методы отличаются хорошей воспроизводимостью, простотой, высокой разрешающей способностью в разделении веществ, а также большой производительностью, возможностью фракционировать молекулы независимо от факторов окружающей среды. При хроматографии используют носители, которые многие изготовители научились делать весьма устойчивыми и инертными по отношению к биологическим полимерам, число которых велико. Инструкции и проспекты, прилагаемые изготовителями, очень обстоятельно информируют о характеристиках и возможностях носителей. Ссылки на исследовательские работы, в которых применены эти методы, насчитывают десятки тысяч. Они предоставляются также поставщиками этой продукции. [c.85]

    В этом разделе будут в широком аспекте рассмотрены два опубликованных обзора [119, 75]. Совокупность, которую принято называть растворимыми белками, оказывается разнородной, даже если альбумины и глобулины рассматривать по отдельности. Их можно фракционировать, а некоторые компоненты — очищать методами, традиционно применяемыми для белков, среди которых наиболее популярными являются высаливание сульфатом аммония, ионообменная хроматография и препаративный электрофорез. [c.181]

    Полностью метилированный полисахарид гидролизуют до метилированных моносахаридов в присутствии серной и трифторуксусной кислот. Реакционную смесь фракционируют с помощью распределительной хроматографии на целлюлозе или силикагеле [22], адсорбционной хроматографии или, лучще, газожидкостной хроматографии в виде летучих производных, например полностью метилированных метилгликозидов [23], частично метилированных ацетатов альдитов [24] или частично метилированных триметилсилильных эфиров [25]. Для дальнейшей идентификации этих [c.218]


    Два метанольных экстракта вместе с экстрактами необработанной древесины были подвергнуты обработке для удаления лигнина Класона и кислоторастворимого лигнина. Затем смесь фракционировалась бумажной хроматографией. [c.728]

    Нерастворимые в воде полипептиды можно фракционировать в буферных растворах, содержащих 6—8 М мочевины. Мочевину следует перекристаллизовать и обессолить на ионообменнике, поскольку соли, содержащиеся в препарате мочевины в качестве примесей, могут изменить ионную силу раствора, и хроматография станет плохо воспроизводимой. Особенно важно провести предварительную очистку мочевины, если молярность стартового буферного раствора низка (0,001—0,005 М). [c.203]

    В тонком слое адсорбента, главным образом силикагеля или окиси алюминия, можно проводить микроанализ смеси липофильных веществ так же просто, как и хроматографией на бумаге. Область применения этого метода быстро расширялась, и в настоящее время с его помощью проводят анализ гидрофильных соединений, которые можно фракционировать и на бумаге, но тонкослойная хроматография на порядок чувствительнее и проходит значительно быстрее. [c.231]

    Предварительное фракционирование по молекулярным массам дает большой эффект при последующем фракционировании на хроматографических колонках. Так, если смесь должна быть фракционирована в широком диапазоне молекулярно-массового распределения, то применение гель-хроматографии малоэффективно, так как раствор должен быть пропущен через ряд колонок, чтобы достичь нужной степени разделения индивидуальных компонентов. Но если исходную смесь предварительно разделить с помощью ультрафильтрации на несколько фракций, то дальнейшее фракционирование на хроматографических колонках не представляет труда. При этом разделение будет пр01ведено не только быстрее, но и качественней. Более того, ультрафильтрацией рас- [c.284]

    Комбинированный метод определения индивидуального состава бензинов прямой перегонки основан на сочетании фракциониро-ванно1[ перегонки, адсорбционной хроматографии, каталитической дегидрогенизации шестичленных нафтенов и на оптическом анализе получаемых узких фракций при помощи спектров комби-нациозного рассеяния света [17 4, стр. 217]. [c.97]

    Существенный прогресс в формировании представлений о макроструктуре асфальтенов, а также методах разделения их по молекулярным весам позволил приступить к исследованию влияния на свойства битумов не вообще асфальтенов, а отдельных их фракций, резко отличающихся по своим физическим свойствам [30]. Были исследованы три битума босканский асфальтенового основания (Венесуэла), Мидуэй спешиал нафтенового основания (Калифорния) и Сафания парафинового основания (аравийский). Деасфальтизацией этих битумов м-пентаном были выделены асфальтены, которые резко различались по составу и характеру. Образцы фракционировались методом препаративной хроматографии на геле, готовились растворы асфальтенов и их фракций в различных растворителях. Затем определялась зависимость вязкости растворов от концентрации, молекулярного веса и структуры асфальтенов, растворяющей способности растворителя с целью вы- [c.197]

    Молекулярне-массовое распределение полимеров. Синтетические полимеры — смесь молекул различной массы. Для построения кривых распределения исходную смесь фракционируют добавлением нерастворителя, центрифугированием и хроматографией (обычно фильтрованием через гели). Затем определяют молекулярную массу каждой фракции. Кривые распределения полимергомологов по молекулярной массе подобны соответствующим кривым распределения частиц по размерам, получаемым седиментационным анализом суспензий. [c.211]

    Инсулин сильно агрегирован в 0,9%-ном растворе лрн pH = 7, но в очень разбавленных растворах при pH =2—3 он полностью диссоциирован. Молекулярный вес инсулина, определенный различнымифизически ми методами, равен 1,2 000, однако определение, проведенное химическим методом, показало ошибочность этой цифры. Харфенист и Крейг фракционировали инсулин методом противоточного распределения и показали, что кривая распределения соответствует идеальной для однородного вещества. В дальнейшем (1952) они подобрали условия частичной реакции белка с динитрофторбензолом, разделили продукты реакции распределительной хроматографией и, исходя из коэффициента экстинкции при 350 ммк (для монодинитрофенильного производного) и из кривой распределения, нашли значение молекулярного веса, равное 6500. [c.698]

    Белки относительно малых размеров можно фракционировать и на колонках типа jg при условии их растворимости в ацетонит-риле можно использовать для элюции градиент его концентрации вплоть до 60% [Ni e et al., 1979]. Рассматривая важную проблему денатурации белков в процессе хроматографии, авторы отмечают, что опасность связана не столько с относительно кратковременным пребыванием белка в водно-органическом растворителе, сколько с самим актом гидрофобного взаимодействия белка с матрицей. В результате этого взаимодействия могут нарушиться внутренние гидрофобные связи в белковой глобуле, от которых зависит сохранение ее нативной структуры. [c.211]


    В заключение отметим, что белки сыворотки кролика удается фракционировать хроматографией на силиконированном пористом стекле типа PG-10 (240 А). Элюцию вели лпиейпым градиентом (30—100%) ацетопитрила в 0,01 М Трис-НС1 (pH 7,6) [Mizntani et al., 1982]. [c.216]

    К 100—200 мг РНК добавляют 0,75 н. NaOH из расчета 1 мл щелочи на 100 мг препарата и проводят гидролиз при 37°С в течение 18 ч. После гидролиза суспензию охлаждают и для удаления ионов Na+ тотчас наносят на колонку (0,5x3 см), заполненную катионообменной смолой в Н+-форме. Элюат собирают, колонку промывают трижды 3 мл воды. Фракции объединяют и упаривают на роторном испарителе. Осадок растворяют в минимальном объеме воды и фракционируют рибомононуклеотиды методами электрофореза или хроматографии. [c.180]

    Хро.матографические Ж. а. Действие их основано на разл. сорбционной способности компонентов, входящих в состав анализируемой жидкости. Последняя фракционируется в зтих приборах, и затем разделенные компоненты детектируются посредством оптич., электро- и термохйм. и др. методов. Области применения анализ белков, антибиотиков, витаминов, углеводородов, спиртов, нуклеиновых к-т, нефти определение содержания металлов в жидких средах, бензола и толуола в сточных водах и т. д. (см. также, напр.. Жидкостная хроматография, Тонкослойная хроматография, Эксклюзионная хроматография). [c.151]

    Гель-фильтрацию открыли в 1959 Д. Порат и П. Флодин, к-рые показали возможность фракционирования водорастворимых макромолекул, в т. ч. белков, по мол. массе, в качестве сорбента они использовали сшитый декстрановый гель. В 1964 Д. Мур предложил с помогцью гель-проникающей хроматографии определять ММР полимеров, фракционируя их на стирол-дивинилбензольном геле. [c.413]

    Казалось бы, все преимущества на стороне газо-жидкостной хроматографии. Однако при решении ряда задач удобнее применять перегонку. Прежде всего это относится к тем случаям, когда необходимо фракционировать большие количества вещества. В этом случае газо-жидкостная хроматография на современном уровне ее развития оказывается малопригодной. Разделение даже десятиграммовых количеств требует многократного повторения операции. [c.217]

    Готовят суспензию 19.9 г (114 ммоль) дикалийгидрофосфата, 4,14 г (30,0 ммоль) дигидрофосфата калия и 1,20 г (11,4 ммоль) бромида натрия в растворе 16,1 г (99,5 ммоль) аллилхлорида Ж-156 в 120 мл безводного диметилсульфоксида, нагревают до 80 С (температура бани) и перемещивают 24 ч при этой температуре (вытяжной шкаф, запах диметилсульфида ). После охлаждения реакционную смесь выливают в смесь 400 мл Н2О и 200 мл ССЦ (осторожно ) и после разделения фаз водную фазу экстрагируют 100 мл ССЦ. Органическую фазу высущивают над Ыа280д, растворитель отгоняют под вакуумом и желтый остаток фракционируют при 2 мм рт. ст. При 66-72 С получают 11,2 г (80%) альдегида в виде бесцветного масла, по 1,4647. [При небольших загрузках рекомендуется проводить очистку продукта хроматографией на колонке (силикагель, размер частиц 0,06-0,2 мм, элюент -гексан-эфир 9 1)]. [c.134]

    Глютенины фракционировали в диссоциирующих средах без восстановления дисульфидных мостиков ступенчатыми осаждениями и гель-фильтрацией или, наоборот, в состоянии восстановленных и алкилированных субъединиц посредством ионообменной хроматографии и особенно электрофорезом в присутствии ДДС-Ыа, [c.199]

    Хюбнер и др. [98] разделяли глютенины после восстановления и алкилирования (Я -глютенины) гель-фильтрацией на сефадексе G 200 (0,03М уксусная кислота, 4М мочевина) на три фракции (А, В, С) равной величины, из которых первая (А) обнаружена в агрегированной форме. Две неагрегированные фракции (В, С) были повторно фракционированы ионообменной хроматографией на сульфоэтилцеллюлозе. В таких условиях фракция В разделяется на 7 фракций, из которых некоторые, хотя состоят из нескольких субъединиц с разными молекулярными массами, при электрофорезе в кислом pH ведут себя как гомогенные. Аналогичные результаты получены [89] при фракционировании на сефадексе G 100. Данно и др. [58] добивались аналогичного разделения путем. избирательного осаждения субъединиц этанолом. Для фракционирования субъединиц глютенинов используются также гель-фильтрация и ионообменная хроматография после избирательного растворения в уксусной кислоте [127]. [c.200]

    Возможно использование комбинации хроматографических методов. Например, пятна, полученные в методе ТСХ, элюируют, концентрируют и анализируют методом газовой хроматографии. Таким способом проведено разделение витаминов, пестицидов, полярных углеводородов. При изучении блок- сополимеров вначале предварительно фракционируют макромолекулы по размерам с помощью гельпроникающей хроматографии, а затем по данным ТСХ оценивают долю гомополимеров в блок- сополимере и состав фракций. [c.106]

    Выделяющуюся смесь газов сначала пропускают для предварительной осушки через нагретую до 50°С 85%-ную Н3РО4, затем через колонку с сухим Р4О10 и, наконец, через ловушку, охлажденную до —78 °С, и две ловушки, охлаждаемые жидким N2. Несконденсировавшийся остаток, в основном содержащий Нг, удаляют через затворный клапан, погруженный в воду. Полученный продукт окончательно фракционируют в высоковакуумиой аппаратуре (см. т. 1, ч. I, разд. 13) или разделяют в газовом хроматографе (например, с 20%-ным силиконовым маслом ВС 200 на хромосорбе ОА У 60—80 или с силиконовым маслом 702 на сорбенте типа Се1 1е). [c.716]

    Хаяши и Тачи [26] попытались фракционировать ацетилированный лигнин, полученный при ацетилировании пшеничной соломы, применив хроматографию на колонке с картофельным крахмалом. Им удалось получить только фракции, содержащие как лигнин, так и ксилан. [c.748]

    Хроматография. Пептиды фракционируют с помощью градиентного элюирования. Стартовый буферный раствор имеет pH 3,Ь Смеситель содержит 2500 мл 0,5 н. буферного раствора pH 5,1. Элюат, вытекающий из колонки, собирают фракциями по 10 мл-Нингидриновую реакцию ставят либо непосредственно с полученным элюатом, либо после его щелочного гидролиза. [c.198]

    Подготовка колонки. Для анионообменной хроматографии белков обычно применяют ДЭАЭ-сефадекс А-50. 1,0 г ионообменника суспендируют в дистиллированной воде и оставляют на 1 ч, после чего надосадочную жидкость вместе с медленно оседающими мелкими частичками декантируют. Затем ионообменник отмывают от ионов С1" 0,5 М NaOH. Избыток щелочи отмывают дистиллированной водой и продолжают дальнейшее отмывание кислотой. В связи с тем, что белки сыворотки крови обычно фракционируют в фосфатном буферном растворе, в качестве кислого отмывающего раствора применяют 0,1 М фосфорную кислоту. Избыток кислоты в свою очередь отмывают дистиллированной водой, а затем ионообменник отмывают стартовым буферным раствором до тех пор, пока не наступит равновесие. Проще всего отмывание вести фильтрованием на воронке Бюхнера, поскольку при этом удобно не только отмывать, но и анализировать промывную жидкость. [c.216]

    Тонкослойная хроматография на силикагеле оказалась весьма полезной для идентификации фенйлтиогидантоиновых производных аминокислот (ФТГ-аминокислот). Для предварительного определения этих соединений Бреннер и др. [4] рекомендовали двумерное разделение сначала в смеси хлороформ—метанол (9 1) и затем в смеси хлороформ — муравьиная кислота (100 5). Чтобы идентифицировать ФТГ-аминокислоты, на той же хроматографической пластинке фракционируют стандартные растворы известных аминокислот. [c.236]


Смотреть страницы где упоминается термин Хроматография фракционированная: [c.224]    [c.19]    [c.106]    [c.124]    [c.492]    [c.105]    [c.194]    [c.203]    [c.206]    [c.286]    [c.312]    [c.326]    [c.419]    [c.449]    [c.489]    [c.61]    [c.62]    [c.349]    [c.335]    [c.50]    [c.224]    [c.719]   
Хроматография на бумаге (1962) -- [ c.133 ]




ПОИСК







© 2025 chem21.info Реклама на сайте